23 ๋ถ„ ์†Œ์š”


์ฃผ์ œ

  • ์‚ฌ๋žŒ์˜ 3d ํฌ์ฆˆ ์ถ”์ •(HPE, Human Pose Estimation)
    ์ตœ์‹  ์—ฐ๊ตฌ๋“ค์€ ์ฃผ๋กœ 2D ์ด๋ฏธ์ง€์—์„œ ์‚ฌ๋žŒ์˜ ํฌ์ฆˆ๋ฅผ ์ถ”์ •ํ•˜๋Š” ๋ฐฉ๋ฒ•์— ๋Œ€ํ•ด ๋‹ค๋ฃจ๊ณ  ์žˆ๋‹ค. ์ผ๋‹จ 2d์˜ ์„ผ์„œ ๋ฐ์ดํ„ฐ์ด๋“ ์ง€, 3d ์„ผ์„œ ๋ฐ์ดํ„ฐ์ด๋“ ์ง€ pose๋ฅผ ์ถ”์ •ํ•˜๋Š” ๊ฒƒ์€ ๋น„์Šทํ•˜๋‹ค๊ณ  ๊ฐ€์„ค์„ ์„ธ์›Œ๋†“๊ณ , 3d pose estimation์„ ํ•˜๋Š” ๋…ผ๋ฌธ์„ ์ฐพ์•„๋ณด์•˜๋‹ค.

MotionAGFormer: ๋…ผ๋ฌธ ๊ด€๋ จ ์ •๋ณด

"MotionAGFormer: Enhancing 3D Human Pose Estimation with a Transformer-GCNFormer Network"

๐Ÿ“š ์ถœ์ฒ˜: S Mehraban, V Adeli, B Taati โ€“ Proceedings of the IEEE/CVF WACV, 2024

๐Ÿ”— ๋…ผ๋ฌธ ๋งํฌ: WACV ๋…ผ๋ฌธ ๋งํฌ

๐Ÿ“„ PDF ๋‹ค์šด๋กœ๋“œ: PDF ํŒŒ์ผ ๋งํฌ

๐Ÿง  ์ฝ”๋“œ ์ €์žฅ์†Œ: GitHub Repository


1. ์—ฐ๊ตฌ ๋ชฉ์ 

  • 3D ์ธ๊ฐ„ ํฌ์ฆˆ ์ถ”์ • (3D Human Pose Estimation)์„ ๊ฐœ์„ ํ•˜๊ธฐ ์œ„ํ•ด Transformer์™€ Graph Convolutional Network (GCN)์„ ๊ฒฐํ•ฉํ•œ ์ƒˆ๋กœ์šด ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆ.
  • ๊ธฐ์กด Transformer ๊ธฐ๋ฐ˜ ๋ชจ๋ธ์ด ๊ธ€๋กœ๋ฒŒ ๊ด€๊ณ„ (Global Relationships)๋Š” ์ž˜ ํฌ์ฐฉํ•˜์ง€๋งŒ ๋กœ์ปฌ ์˜์กด์„ฑ (Local Dependencies)์„ ์ •ํ™•ํ•˜๊ฒŒ ์ฒ˜๋ฆฌํ•˜์ง€ ๋ชปํ•˜๋Š” ํ•œ๊ณ„๋ฅผ ๊ทน๋ณต.

2. ๊ธฐ์ˆ ์  ์ ‘๊ทผ๋ฒ•

  1. Attention-GCNFormer (AGFormer) ๋ธ”๋ก:
    - ๋‘ ๊ฐœ์˜ ๋ณ‘๋ ฌ ์ŠคํŠธ๋ฆผ, ์ฆ‰ Transformer ์ŠคํŠธ๋ฆผ๊ณผ GCNFormer ์ŠคํŠธ๋ฆผ์„ ์‚ฌ์šฉํ•˜์—ฌ ๊ธ€๋กœ๋ฒŒ ๋ฐ ๋กœ์ปฌ ๊ด€๊ณ„๋ฅผ ๋™์‹œ์— ํฌ์ฐฉ.
  2. ๋กœ์ปฌ ๊ด€๊ณ„ (Local Relationships):
    - GCNFormer๋Š” ์ธ์ ‘ํ•œ ๊ด€์ ˆ (Joint) ๊ฐ„์˜ ๋กœ์ปฌ ์˜์กด์„ฑ์„ ํ•™์Šตํ•˜์—ฌ Transformer์˜ ๊ธ€๋กœ๋ฒŒ ๊ด€๊ณ„๋ฅผ ๋ณด์™„.
  3. ์–ด๋Œ‘ํ‹ฐ๋ธŒ ์œตํ•ฉ (Adaptive Fusion):
    - Transformer์™€ GCNFormer์˜ ์ถœ๋ ฅ์„ ํ†ตํ•ฉํ•˜์—ฌ 3D ๊ตฌ์กฐ๋ฅผ ๋ณด๋‹ค ์ •ํ™•ํ•˜๊ฒŒ ์žฌ๊ตฌ์„ฑ.
  4. ๋‹ค์ค‘ AGFormer ๋ธ”๋ก ์Šคํƒœํ‚น:
    - ์—ฌ๋Ÿฌ AGFormer ๋ธ”๋ก์„ ์Šคํƒํ•˜์—ฌ MotionAGFormer ๋„คํŠธ์›Œํฌ๋ฅผ ๊ตฌ์„ฑ.

3. ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„

  • ์ž…๋ ฅ: 2D ๋˜๋Š” 3D ํฌ์ฆˆ ๋ฐ์ดํ„ฐ.
  • Transformer ์ŠคํŠธ๋ฆผ: ์ „์ฒด ํฌ์ฆˆ ๊ตฌ์กฐ์˜ ๊ธ€๋กœ๋ฒŒ ๊ด€๊ณ„ ํ•™์Šต.
  • GCNFormer ์ŠคํŠธ๋ฆผ: ์ธ์ ‘ํ•œ ๊ด€์ ˆ ๊ฐ„์˜ ๋กœ์ปฌ ์˜์กด์„ฑ ํ•™์Šต.
  • ์ถœ๋ ฅ: ํ†ตํ•ฉ๋œ 3D ํฌ์ฆˆ ์žฌ๊ตฌ์„ฑ.

4. ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ

  • ๋ฒค์น˜๋งˆํฌ ๋ฐ์ดํ„ฐ์…‹: Human3.6M, MPI-INF-3DHP.
  • ํ‰๊ท  ์žฌ๊ตฌ์„ฑ ์˜ค๋ฅ˜ (P1 Error):
    • Human3.6M: 38.4 mm
    • MPI-INF-3DHP: 16.2 mm
  • ํšจ์œจ์„ฑ: ์ด์ „ ์ตœ๊ณ  ์„ฑ๋Šฅ ๋ชจ๋ธ ๋Œ€๋น„ 1/4 ์ˆ˜์ค€์˜ ํŒŒ๋ผ๋ฏธํ„ฐ์™€ 3๋ฐฐ ๋†’์€ ๊ณ„์‚ฐ ํšจ์œจ์„ฑ.
  • ์†๋„-์ •ํ™•๋„ ๊ท ํ˜•: ๋„ค ๊ฐ€์ง€ ๋‹ค์–‘ํ•œ ๋ณ€ํ˜•(Variants)์„ ์ œ๊ณตํ•˜์—ฌ ๋‹ค์–‘ํ•œ ์‘์šฉ ์‚ฌ๋ก€ ์ง€์›.

5. ์ฃผ์š” ๊ธฐ์—ฌ

  • โœ… Attention-GCNFormer ๋ธ”๋ก ๋„์ž…: ๊ธ€๋กœ๋ฒŒ ๋ฐ ๋กœ์ปฌ ๊ด€๊ณ„๋ฅผ ๋ชจ๋‘ ํšจ๊ณผ์ ์œผ๋กœ ํ•™์Šต.
  • โœ… ์ ์‘ํ˜• ์œตํ•ฉ: Transformer์™€ GCNFormer ์ถœ๋ ฅ์„ ์ตœ์ ํ™”๋œ ๋ฐฉ์‹์œผ๋กœ ํ†ตํ•ฉ.
  • โœ… ํšจ์œจ์„ฑ ์ตœ์ ํ™”: ๋” ์ ์€ ํŒŒ๋ผ๋ฏธํ„ฐ๋กœ ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ ๋‹ฌ์„ฑ.

6. ์‘์šฉ ๋ถ„์•ผ

  • ๐Ÿ›ก๏ธ ํœด๋จผ-๋กœ๋ด‡ ์ƒํ˜ธ์ž‘์šฉ (HRI): ๋กœ๋ด‡์ด ์‚ฌ๋žŒ์˜ ์›€์ง์ž„์„ ์ •ํ™•ํ•˜๊ฒŒ ์ธ์‹.
  • ๐ŸŽฎ ๊ฒŒ์ž„ ๋ฐ ์˜ํ™” ์‚ฐ์—…: ์ž์—ฐ์Šค๋Ÿฌ์šด ์บ๋ฆญํ„ฐ ์• ๋‹ˆ๋ฉ”์ด์…˜ ์ƒ์„ฑ.
  • ๐Ÿƒ ์Šคํฌ์ธ  ๋ถ„์„: ์„ ์ˆ˜์˜ ์›€์ง์ž„์„ ์ •๋ฐ€ํ•˜๊ฒŒ ๋ถ„์„.
  • ๐Ÿฉบ ์˜๋ฃŒ ๋ฐ ์žฌํ™œ: ํ™˜์ž์˜ ์ž์„ธ ๋ฐ ์›€์ง์ž„ ๋ชจ๋‹ˆํ„ฐ๋ง.

7. ํ•œ๊ณ„ ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ

  • ๋ณต์žกํ•œ ํ™˜๊ฒฝ ๋ฐ ๊ฐ€๋ ค์ง„ ๋ถ€๋ถ„ (Occlusion)์—์„œ๋Š” ์ •ํ™•๋„ ์ €ํ•˜ ๊ฐ€๋Šฅ.
  • ๋†’์€ ๊ณ„์‚ฐ ๋ฆฌ์†Œ์Šค๋ฅผ ์š”๊ตฌํ•  ์ˆ˜ ์žˆ์Œ.

8. ๊ฒฐ๋ก 

  • MotionAGFormer๋Š” Transformer์™€ GCNFormer์˜ ์žฅ์ ์„ ๊ฒฐํ•ฉํ•˜์—ฌ 3D ์ธ๊ฐ„ ํฌ์ฆˆ ์ถ”์ •์˜ ์ •ํ™•๋„์™€ ํšจ์œจ์„ฑ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ด.
  • ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ๊ณผ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์ด ๋†’์Œ.

๐Ÿ—“๏ธ ์ถœํŒ ์—ฐ๋„: 2024


TRAM: ๋…ผ๋ฌธ ๊ด€๋ จ ์ •๋ณด

"TRAM: Global Trajectory and Motion of 3D Humans from in-the-Wild Videos"

๐Ÿ“š ์ถœ์ฒ˜: Y Wang, Z Wang, L Liu, K Daniilidis โ€“ European Conference on Computer Vision (ECCV), 2025

๐Ÿ”— ๋…ผ๋ฌธ ๋งํฌ: Springer Link

๐Ÿ“„ PDF ๋‹ค์šด๋กœ๋“œ: arXiv PDF ๋งํฌ

๐Ÿง  ์ €์ž ์ •๋ณด:

๐ŸŒ ํ”„๋กœ์ ํŠธ ํŽ˜์ด์ง€: TRAM Project

๐Ÿ“ฆ ์ฝ”๋“œ ์ €์žฅ์†Œ: GitHub Repository


1. ์—ฐ๊ตฌ ๋ชฉ์ 

  • 3D ์ธ๊ฐ„์˜ ์ „์—ญ ๊ถค์  (Global Trajectory)๊ณผ ๋™์ž‘ (Motion)์„ ์ž์—ฐ ์˜์ƒ (In-the-Wild Videos)์—์„œ ์ •ํ™•ํ•˜๊ฒŒ ์žฌ๊ตฌ์„ฑ.
  • ๊ธฐ์กด SLAM (๋™์‹œ์  ์œ„์น˜์ถ”์ • ๋ฐ ์ง€๋„์ž‘์„ฑ) ์‹œ์Šคํ…œ์˜ ๋™์  ์ธ๊ฐ„ ๊ฐ์ฒด ๋ฌธ์ œ (Dynamic Human Object Issues)๋ฅผ ํ•ด๊ฒฐ.
  • ์นด๋ฉ”๋ผ ์›€์ง์ž„์„ ๊ธฐ์ค€ ์ฒ™๋„ (Metric-Scale Reference)๋กœ ์‚ฌ์šฉํ•ด ์ •ํ™•ํ•œ 3D ์ธ๊ฐ„ ํฌ์ฆˆ์™€ ๊ถค์ ์„ ๋ณต์›.

2. ๊ธฐ์ˆ ์  ์ ‘๊ทผ๋ฒ•

  1. SLAM ์ตœ์ ํ™”:
    • SLAM ์‹œ์Šคํ…œ์„ ๊ฐœ์„ ํ•˜์—ฌ ๋™์  ์ธ๊ฐ„ ๊ฐ์ฒด๋กœ ์ธํ•œ ์˜ค๋ฅ˜๋ฅผ ์ตœ์†Œํ™”.
    • ๋ฐฐ๊ฒฝ (Scene Background)์„ ํ™œ์šฉํ•˜์—ฌ ๋™์ž‘ ์Šค์ผ€์ผ (Motion Scale)์„ ๋ณต์›.
  2. Video Transformer Model (VIMO):
    • ๋น„๋””์˜ค ๊ธฐ๋ฐ˜ Transformer ๋ชจ๋ธ์„ ๋„์ž…ํ•ด ์‹ ์ฒด ๋™์ž‘ (Kinematic Body Motion)์„ ํšŒ๊ท€ ์˜ˆ์ธก.
    • ์‹œ๊ฐ„์  ์—ฐ์†์„ฑ (Temporal Consistency)์„ ์œ ์ง€ํ•˜๋ฉฐ ํ”„๋ ˆ์ž„ ๊ฐ„ ๋ณ€ํ™”๋ฅผ ํฌ์ฐฉ.
  3. ๋‘ ๋™์ž‘์˜ ํ†ตํ•ฉ:
    • ์นด๋ฉ”๋ผ ์›€์ง์ž„๊ณผ ์ธ์ฒด ์›€์ง์ž„์„ ๊ฒฐํ•ฉํ•ด ์ •ํ™•ํ•œ ์„ธ๊ณ„ ์ขŒํ‘œ๊ณ„ (World Space)์—์„œ์˜ 3D ์ธ๊ฐ„ ํฌ์ฆˆ ๋ณต์›.

3. ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„

  • ์ž…๋ ฅ: ์ž์—ฐ ์˜์ƒ (In-the-Wild Videos).
  • Step 1: SLAM์„ ์‚ฌ์šฉํ•˜์—ฌ ์นด๋ฉ”๋ผ ์›€์ง์ž„๊ณผ ๋ฐฐ๊ฒฝ ์ •๋ณด๋ฅผ ๋ถ„์„.
  • Step 2: VIMO๋ฅผ ํ†ตํ•ด ์‹ ์ฒด ๋™์ž‘์„ ํ”„๋ ˆ์ž„ ๋‹จ์œ„๋กœ ์˜ˆ์ธก.
  • Step 3: ์นด๋ฉ”๋ผ ๊ถค์ ๊ณผ ์‹ ์ฒด ๋™์ž‘์„ ํ†ตํ•ฉํ•˜์—ฌ ์ „์—ญ ์ขŒํ‘œ๊ณ„์—์„œ ํฌ์ฆˆ๋ฅผ ๋ณต์›.
  • ์ถœ๋ ฅ: ์ •ํ™•ํ•œ 3D ์ธ๊ฐ„ ๊ถค์  ๋ฐ ์›€์ง์ž„ ์žฌ๊ตฌ์„ฑ.

4. ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ

  • ๋ฒค์น˜๋งˆํฌ ๋ฐ์ดํ„ฐ์…‹: Human3.6M, 3DPW, EgoBody.
  • ์ •ํ™•๋„ ๊ฐœ์„ : ๊ธฐ์กด ๋ฐฉ๋ฒ• ๋Œ€๋น„ ๊ธ€๋กœ๋ฒŒ ๋ชจ์…˜ ์˜ค์ฐจ (Global Motion Error)๊ฐ€ ํฌ๊ฒŒ ๊ฐ์†Œ.
  • ์‹œ๊ฐ„ ์ผ๊ด€์„ฑ: ํ”„๋ ˆ์ž„ ๊ฐ„ ์ธ๊ฐ„ ์›€์ง์ž„์ด ์ž์—ฐ์Šค๋Ÿฝ๊ณ  ์ผ๊ด€๋˜๊ฒŒ ์œ ์ง€๋จ.
  • ์‹ค์ œ ํ™˜๊ฒฝ ์ ์šฉ: ์ž์—ฐ์Šค๋Ÿฌ์šด ๋น„๋””์˜ค ๋ฐ์ดํ„ฐ์…‹์—์„œ๋„ ๊ฐ•๊ฑดํ•œ ์„ฑ๋Šฅ ์ž…์ฆ.

5. ์ฃผ์š” ๊ธฐ์—ฌ

  • โœ… SLAM ์ตœ์ ํ™”: ๋™์  ์ธ๊ฐ„ ๊ฐ์ฒด๋กœ ์ธํ•œ ์˜ค๋ฅ˜๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์™„ํ™”.
  • โœ… Video Transformer (VIMO): ๋น„๋””์˜ค ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•ด ์‹œ๊ฐ„์  ์—ฐ์†์„ฑ์„ ์œ ์ง€.
  • โœ… ๊ธ€๋กœ๋ฒŒ ๊ถค์  ๋ณต์›: ์นด๋ฉ”๋ผ ๊ถค์ ๊ณผ ์ธ๊ฐ„ ์›€์ง์ž„์„ ํ†ตํ•ฉํ•˜์—ฌ ํ˜„์‹ค์  3D ๋ณต์›.
  • โœ… ๋„๋ฉ”์ธ ์ผ๋ฐ˜ํ™”: ๋‹ค์–‘ํ•œ ์ž์—ฐ ๋น„๋””์˜ค์—์„œ ๊ฐ•๋ ฅํ•œ ์„ฑ๋Šฅ ๊ฒ€์ฆ.

6. ์‘์šฉ ๋ถ„์•ผ

  • ๐Ÿ›ก๏ธ ์Šค๋งˆํŠธ ๊ฐ์‹œ ์‹œ์Šคํ…œ: ์ž์—ฐ์Šค๋Ÿฌ์šด ์ธ๊ฐ„ ํ–‰๋™ ๋ถ„์„ ๋ฐ ๋ชจ๋‹ˆํ„ฐ๋ง.
  • ๐ŸŽฎ ๊ฒŒ์ž„ ๋ฐ VR/AR: ์‹ค์ œ ์ธ๊ฐ„ ์›€์ง์ž„ ๊ธฐ๋ฐ˜์˜ ์บ๋ฆญํ„ฐ ์• ๋‹ˆ๋ฉ”์ด์…˜.
  • ๐ŸŽฅ ์˜ํ™” ๋ฐ VFX: ์‚ฌ์‹ค์ ์ธ ์ธ๊ฐ„ ์›€์ง์ž„ ์žฌํ˜„.
  • ๐Ÿค– ํœด๋จผ-๋กœ๋ด‡ ์ƒํ˜ธ์ž‘์šฉ: ๋กœ๋ด‡์ด ์‚ฌ๋žŒ์˜ ์›€์ง์ž„์„ ์ •ํ™•ํ•˜๊ฒŒ ์ธ์‹ ๋ฐ ์ถ”์ .

7. ํ•œ๊ณ„ ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ

  • ๊ทน๋‹จ์ ์ธ ๋™์ž‘์ด๋‚˜ ๋ณต์žกํ•œ ๋ฐฐ๊ฒฝ์—์„œ์˜ ์„ฑ๋Šฅ ์ €ํ•˜ ๊ฐ€๋Šฅ์„ฑ.
  • ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ ์ถ”๊ฐ€ ์ตœ์ ํ™” ํ•„์š”.

8. ๊ฒฐ๋ก 

  • TRAM์€ SLAM๊ณผ Transformer ๋ชจ๋ธ์„ ํ†ตํ•ฉํ•˜์—ฌ 3D ์ธ๊ฐ„ ๊ถค์  ๋ฐ ๋™์ž‘์„ ์ž์—ฐ ๋น„๋””์˜ค ๋ฐ์ดํ„ฐ์—์„œ ์ •ํ™•ํ•˜๊ฒŒ ์žฌ๊ตฌ์„ฑ.
  • ๊ธ€๋กœ๋ฒŒ ์ขŒํ‘œ๊ณ„์—์„œ์˜ ์ผ๊ด€๋œ ์›€์ง์ž„์„ ์žฌํ˜„ํ•˜๋ฉฐ ๋‹ค์–‘ํ•œ ์‘์šฉ ๋ถ„์•ผ์—์„œ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์ž…์ฆ.

๐Ÿ—“๏ธ ์ถœํŒ ์—ฐ๋„: 2025


RGB-D ๊ธฐ๋ฐ˜ 3D ํฌ์ฆˆ ์ถ”์ •

Impact of 3D Cartesian Positions and Occlusion on Self-Avatar Full-Body Animation in Virtual Reality: ๋…ผ๋ฌธ ๊ด€๋ จ ์ •๋ณด

"Impact of 3D Cartesian Positions and Occlusion on Self-Avatar Full-Body Animation in Virtual Reality"

๐Ÿšจ ์ฝ”๋“œ: ์ฝ”๋“œ ์—†์Œ

๐Ÿ“š ์ถœ์ฒ˜: G Fletcher, SA Ghasemzadeh, T Ravet โ€“ Proceedings of Advanced Virtual Reality and Extended Reality, 2025

๐Ÿ”— ๋…ผ๋ฌธ ๋งํฌ: UCLouvain Repository

๐Ÿง  ์ €์ž ์ •๋ณด:


1. ์—ฐ๊ตฌ ๋ชฉ์ 

  • RGB-D ๋ฐ์ดํ„ฐ (RGB-Depth Data)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ 3D ์ธ๊ฐ„ ํฌ์ฆˆ ์žฌ๊ตฌ์„ฑ (3D Human Pose Reconstruction)์˜ ์ •ํ™•๋„๋ฅผ ๋†’์ž„.
  • ๊ฐ€๋ ค์ง (Occlusions)์ด ๋ฐœ์ƒํ•œ ์ƒํ™ฉ์—์„œ ์ธ๊ฐ„ ํฌ์ฆˆ์˜ ์ •ํ™•ํ•œ ์ถ”์ •์„ ๋ชฉํ‘œ๋กœ ํ•จ.
  • Self-Avatar Animation์—์„œ 3D Cartesian ์œ„์น˜ ์˜ค๋ฅ˜์˜ ์˜ํ–ฅ์„ ๋ถ„์„.

2. ๊ธฐ์ˆ ์  ์ ‘๊ทผ๋ฒ•

  1. RGB-D ๋ฐ์ดํ„ฐ ํ†ตํ•ฉ:
    • RGB ์ด๋ฏธ์ง€์™€ ๊นŠ์ด(Depth) ๋ฐ์ดํ„ฐ๋ฅผ ์œตํ•ฉํ•˜์—ฌ ํฌ์ฆˆ ์ถ”์ • ์ •ํ™•๋„ ํ–ฅ์ƒ.
  2. Occlusion Handling Module:
    • ๊ฐ€๋ ค์ง (Occlusion) ์ƒํ™ฉ์„ ๊ฐ์ง€ํ•˜๊ณ  ์˜ˆ์ธก๋œ ํฌ์ฆˆ๋ฅผ ๋ณด์ •.
    • ๋น„๊ฐ€๋ ค์ง„ ๊ด€์ ˆ ์ •๋ณด๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฐ€๋ ค์ง„ ๋ถ€๋ถ„์„ ์˜ˆ์ธก.
  3. Self-Avatar Animation Pipeline:
    • 3D Cartesian ์ขŒํ‘œ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์‚ฌ์šฉ์ž ์•„๋ฐ”ํƒ€์˜ ์ „์ฒด ์›€์ง์ž„์„ ์žฌ๊ตฌ์„ฑ.
    • ์‹ค์‹œ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์„ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•œ ์ตœ์ ํ™”๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ ์šฉ.

3. ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„

  • ์ž…๋ ฅ: RGB-D ๋น„๋””์˜ค ํ”„๋ ˆ์ž„.
  • Step 1: RGB ์ด๋ฏธ์ง€์—์„œ ์ดˆ๊ธฐ ํฌ์ฆˆ๋ฅผ ์˜ˆ์ธก.
  • Step 2: ๊นŠ์ด ๋ฐ์ดํ„ฐ(Depth Map)๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํฌ์ฆˆ๋ฅผ 3D ์ขŒํ‘œ๋กœ ๋ณ€ํ™˜.
  • Step 3: Occlusion Handling Module์„ ํ†ตํ•ด ๊ฐ€๋ ค์ง„ ๊ด€์ ˆ์˜ ์œ„์น˜๋ฅผ ์˜ˆ์ธก.
  • Step 4: Self-Avatar Animation์œผ๋กœ ์ตœ์ข… ํฌ์ฆˆ๋ฅผ ์‹œ๊ฐํ™”.
  • ์ถœ๋ ฅ: ๊ฐ€๋ ค์ง์ด ๋ณด์ •๋œ 3D ์ธ๊ฐ„ ํฌ์ฆˆ ๋ฐ ์‹ค์‹œ๊ฐ„ ์•„๋ฐ”ํƒ€ ์• ๋‹ˆ๋ฉ”์ด์…˜.

4. ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ

  • ๋ฒค์น˜๋งˆํฌ ๋ฐ์ดํ„ฐ์…‹: Human3.6M, MPI-INF-3DHP.
  • ์˜ค๋ฅ˜ ๋ถ„์„: ๊ฐ€๋ ค์ง„ ํ™˜๊ฒฝ์—์„œ์˜ MPJPE (Mean Per Joint Position Error) ๋ถ„์„.
  • ์ •ํ™•๋„ ํ–ฅ์ƒ: RGB-D ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ฉํ•œ ํ›„ ํฌ์ฆˆ ์ •ํ™•๋„๊ฐ€ 18% ๊ฐœ์„ .
  • ์‹ค์‹œ๊ฐ„ ์„ฑ๋Šฅ: ์•„๋ฐ”ํƒ€ ์›€์ง์ž„์ด ์‹ค์‹œ๊ฐ„์œผ๋กœ ์žฌ๊ตฌ์„ฑ๋จ.

5. ์ฃผ์š” ๊ธฐ์—ฌ

  • โœ… RGB-D ๋ฐ์ดํ„ฐ ํ†ตํ•ฉ: RGB ์ด๋ฏธ์ง€์™€ ๊นŠ์ด ์ •๋ณด๋ฅผ ํ•จ๊ป˜ ์‚ฌ์šฉํ•ด ํฌ์ฆˆ ์ •ํ™•๋„ ๊ฐœ์„ .
  • โœ… Occlusion Handling Module: ๊ฐ€๋ ค์ง„ ํฌ์ฆˆ ๋ถ€๋ถ„์„ ์˜ˆ์ธกํ•˜์—ฌ ์ „์ฒด ํฌ์ฆˆ์˜ ์ผ๊ด€์„ฑ ์œ ์ง€.
  • โœ… Self-Avatar Animation: 3D Cartesian ์ขŒํ‘œ ๊ธฐ๋ฐ˜์œผ๋กœ ์•„๋ฐ”ํƒ€ ์›€์ง์ž„์„ ์ž์—ฐ์Šค๋Ÿฝ๊ฒŒ ์žฌํ˜„.
  • โœ… ์‹ค์‹œ๊ฐ„ ์„ฑ๋Šฅ: ์•„๋ฐ”ํƒ€ ์• ๋‹ˆ๋ฉ”์ด์…˜์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ตฌํ˜„.

6. ์‘์šฉ ๋ถ„์•ผ

  • ๐ŸŽฎ VR/AR ๊ฒŒ์ž„: ์‚ฌ์šฉ์ž ์›€์ง์ž„์„ ์ •ํ™•ํ•˜๊ฒŒ ๋ฐ˜์˜ํ•œ ์•„๋ฐ”ํƒ€ ์• ๋‹ˆ๋ฉ”์ด์…˜.
  • ๐Ÿฉบ ์˜๋ฃŒ ์žฌํ™œ: ํ™˜์ž์˜ ์›€์ง์ž„ ๋ถ„์„ ๋ฐ ๋ฌผ๋ฆฌ ์น˜๋ฃŒ ๋ณด์กฐ.
  • ๐Ÿ›ก๏ธ ์Šค๋งˆํŠธ ๊ฐ์‹œ ์‹œ์Šคํ…œ: ๊ฐ€๋ ค์ง„ ์ƒํ™ฉ์—์„œ๋„ ์ธ๊ฐ„ ์›€์ง์ž„ ์ถ”์ .
  • ๐Ÿค– ๋กœ๋ด‡ ์ƒํ˜ธ์ž‘์šฉ: ์ธ๊ฐ„ ํฌ์ฆˆ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์žฌ๊ตฌ์„ฑํ•˜์—ฌ ๋กœ๋ด‡์— ๋ฐ˜์˜.

7. ํ•œ๊ณ„ ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ

  • ๋ณต์žกํ•œ ๊ฐ€๋ ค์ง ์ƒํ™ฉ์—์„œ๋Š” ์—ฌ์ „ํžˆ ์˜ˆ์ธก ์˜ค๋ฅ˜ ๋ฐœ์ƒ ๊ฐ€๋Šฅ์„ฑ.
  • ์‹ค์‹œ๊ฐ„ ์‹œ์Šคํ…œ์„ ์œ„ํ•œ ์ถ”๊ฐ€ ์ตœ์ ํ™” ํ•„์š”.
  • ๋‹ค์–‘ํ•œ ์กฐ๋ช… ๋ฐ ํ™˜๊ฒฝ ์กฐ๊ฑด์—์„œ ์ถ”๊ฐ€ ์‹คํ—˜ ํ•„์š”.

8. ๊ฒฐ๋ก 

  • RGB-D ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ 3D ์ธ๊ฐ„ ํฌ์ฆˆ ์žฌ๊ตฌ์„ฑ์€ ๊ฐ€๋ ค์ง (Occlusion) ๋ฌธ์ œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜์—ฌ ์ •ํ™•ํ•œ ํฌ์ฆˆ ์˜ˆ์ธก์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•จ.
  • Self-Avatar Animation์€ 3D Cartesian ์ขŒํ‘œ๋ฅผ ํ†ตํ•ด ๋ณด๋‹ค ์ž์—ฐ์Šค๋Ÿฌ์šด ์ธ๊ฐ„ ์›€์ง์ž„์„ ์‹œ๊ฐํ™”.
  • VR, ์˜๋ฃŒ, ๋กœ๋ด‡ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ์‘์šฉ๋  ๊ฐ€๋Šฅ์„ฑ์„ ์ž…์ฆ.

๐Ÿ—“๏ธ ์ถœํŒ ์—ฐ๋„: 2025


A Real-time Multi-Person 3D Pose Estimation System from Multiple RGB-D Views for Live Streaming of 3D Animation: ๋…ผ๋ฌธ ๊ด€๋ จ ์ •๋ณด

"A Real-time Multi-Person 3D Pose Estimation System from Multiple RGB-D Views for Live Streaming of 3D Animation"

๐Ÿ“š ์ถœ์ฒ˜: T Hwang, J Kim, M Kim, M Kim โ€“ Proceedings of the 28th International Conference on Virtual Reality and 3D User Interfaces (VR), 2023

๐Ÿ”— ๋…ผ๋ฌธ ๋งํฌ: ACM Digital Library

๐Ÿ“„ DOI: 10.1145/3581754.3584144

๐Ÿง  ์ €์ž ์ •๋ณด:


1. ์—ฐ๊ตฌ ๋ชฉ์ 

  • ๋‹ค์ค‘ RGB-D ์นด๋ฉ”๋ผ (Multiple RGB-D Views)๋ฅผ ํ™œ์šฉํ•ด ์‹ค์‹œ๊ฐ„ ๋‹ค์ค‘ ์ธ๋ฌผ 3D ํฌ์ฆˆ ์ถ”์ • (Multi-Person 3D Pose Estimation) ์‹œ์Šคํ…œ์„ ์„ค๊ณ„.
  • ๋ผ์ด๋ธŒ ์ŠคํŠธ๋ฆฌ๋ฐ (Live Streaming) ์• ๋‹ˆ๋ฉ”์ด์…˜๊ณผ ๊ฐ€์ƒ ํ˜„์‹ค (VR) ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ๋ชฉํ‘œ๋กœ ํ•จ.
  • ์ค‘์•™ ์„œ๋ฒ„์™€ ์—ฃ์ง€ ์žฅ์น˜ (Edge Devices) ๊ฐ„์˜ ํšจ์œจ์ ์ธ ๋ฐ์ดํ„ฐ ํ†ต์‹ ์„ ํ†ตํ•ด ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ ์„ฑ๋Šฅ์„ ์ตœ์ ํ™”.

2. ๊ธฐ์ˆ ์  ์ ‘๊ทผ๋ฒ•

  1. Edge Device Processing:
    • ๊ฐ ์—ฃ์ง€ ์žฅ์น˜์—์„œ 2D ํฌ์ฆˆ ๊ฐ์ง€ (2D Pose Detection) ๋ฐ ๊นŠ์ด ๊ฐ์ง€ (Depth Sensing)๋ฅผ ๋กœ์ปฌ๋กœ ์ˆ˜ํ–‰.
    • ์—ฐ์‚ฐ ๋ถ€๋‹ด์„ ๋ถ„์‚ฐ ์ฒ˜๋ฆฌํ•˜์—ฌ ๋„คํŠธ์›Œํฌ ํŠธ๋ž˜ํ”ฝ์„ ์ตœ์†Œํ™”.
  2. Central Server Coordination:
    • ์ค‘์•™ ์„œ๋ฒ„๋Š” ๋‹ค์ค‘ ์นด๋ฉ”๋ผ ๋ทฐ์˜ ์ขŒํ‘œ๋ฅผ ์„ธ๊ณ„ ์ขŒํ‘œ๊ณ„ (World Plane)์— ์ •๋ ฌ.
    • ๋ฉ€ํ‹ฐ๋ทฐ ์‚ผ๊ฐ์ธก๋Ÿ‰ (Multi-view Triangulation)์„ ํ†ตํ•ด 3D ํฌ์ฆˆ๋ฅผ ์žฌ๊ตฌ์„ฑ.
  3. Person Matching Across Cameras:
    • ๊ฐ ์นด๋ฉ”๋ผ์—์„œ ๊ฒ€์ถœ๋œ 2D ํฌ์ฆˆ ํ‚คํฌ์ธํŠธ๋ฅผ ์‚ฌ๋žŒ ๋‹จ์œ„๋กœ ๋งค์นญ.
    • ๊ฑฐ๋ฆฌ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹ค์ค‘ ์นด๋ฉ”๋ผ ๋ทฐ ํ†ตํ•ฉ (Person Association).
  4. Real-Time Streaming:
    • ์‹ค์‹œ๊ฐ„์œผ๋กœ 3D ํฌ์ฆˆ๋ฅผ ์žฌ๊ตฌ์„ฑํ•˜์—ฌ ๋ผ์ด๋ธŒ ์ŠคํŠธ๋ฆฌ๋ฐ ์‹œ์Šคํ…œ์— ํ†ตํ•ฉ.

3. ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„

  • ์ž…๋ ฅ: ๋‹ค์ค‘ RGB-D ์นด๋ฉ”๋ผ์—์„œ ์–ป์€ ๋น„๋””์˜ค ๋ฐ ๊นŠ์ด ๋ฐ์ดํ„ฐ.
  • Step 1: ๊ฐ ์—ฃ์ง€ ์žฅ์น˜์—์„œ 2D ํฌ์ฆˆ ๋ฐ ๊นŠ์ด ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘.
  • Step 2: ์ค‘์•™ ์„œ๋ฒ„๋กœ ๋ฐ์ดํ„ฐ๋ฅผ ์ „์†ก.
  • Step 3: ์ค‘์•™ ์„œ๋ฒ„์—์„œ ๋ฉ€ํ‹ฐ๋ทฐ ์‚ผ๊ฐ์ธก๋Ÿ‰์œผ๋กœ 3D ํฌ์ฆˆ ์žฌ๊ตฌ์„ฑ.
  • Step 4: ์ขŒํ‘œ๊ณ„ ์ •๋ ฌ ๋ฐ ์‚ฌ๋žŒ ๋งค์นญ ์ˆ˜ํ–‰.
  • ์ถœ๋ ฅ: ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋‹ค์ค‘ ์ธ๋ฌผ 3D ํฌ์ฆˆ ์žฌ๊ตฌ์„ฑ ๋ฐ ๋ผ์ด๋ธŒ ์ŠคํŠธ๋ฆฌ๋ฐ.

4. ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ

  • ๋ฒค์น˜๋งˆํฌ ํ™˜๊ฒฝ: ์ž์ฒด ๊ตฌ์ถ•๋œ ๋‹ค์ค‘ RGB-D ์นด๋ฉ”๋ผ ์„ค์ •.
  • ์„ฑ๋Šฅ ํ‰๊ฐ€:
    • ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ ์†๋„: ํ‰๊ท  30 FPS ์œ ์ง€.
    • ์ •ํ™•๋„: MPJPE (Mean Per Joint Position Error) ๊ฐœ์„ .
  • ๋ผ์ด๋ธŒ ์ŠคํŠธ๋ฆฌ๋ฐ ํ…Œ์ŠคํŠธ: PC ๋ฐ ์›น ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์„ ํ†ตํ•ด ์•ˆ์ •์ ์ธ ์ŠคํŠธ๋ฆฌ๋ฐ ์„ฑ๋Šฅ ์ž…์ฆ.

5. ์ฃผ์š” ๊ธฐ์—ฌ

  • โœ… Edge-Central ๋ถ„์‚ฐ ์•„ํ‚คํ…์ฒ˜: ์—ฃ์ง€ ์žฅ์น˜์™€ ์ค‘์•™ ์„œ๋ฒ„ ๊ฐ„์˜ ํ˜‘์—… ์ฒ˜๋ฆฌ.
  • โœ… Multi-View Triangulation: ๋ฉ€ํ‹ฐ ์นด๋ฉ”๋ผ ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ด 3D ํฌ์ฆˆ ์ •๋ฐ€๋„ ํ–ฅ์ƒ.
  • โœ… Real-Time Live Streaming: ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋‹ค์ค‘ ์ธ๋ฌผ์˜ ํฌ์ฆˆ๋ฅผ ์žฌ๊ตฌ์„ฑ ๋ฐ ์ŠคํŠธ๋ฆฌ๋ฐ.
  • โœ… Person Matching Across Cameras: ๊ฑฐ๋ฆฌ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹ ๋ขฐ์„ฑ ๋†’์€ ์‚ฌ๋žŒ ๋งค์นญ.

6. ์‘์šฉ ๋ถ„์•ผ

  • ๐ŸŽฎ ๊ฒŒ์ž„ ๋ฐ VR/AR: ๋‹ค์ค‘ ์‚ฌ์šฉ์ž์˜ ์›€์ง์ž„์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ฐ˜์˜ํ•œ ๋ชฐ์ž…ํ˜• ํ™˜๊ฒฝ ๊ตฌ์ถ•.
  • ๐Ÿฉบ ์˜๋ฃŒ ์žฌํ™œ: ์—ฌ๋Ÿฌ ํ™˜์ž์˜ ์ž์„ธ์™€ ์›€์ง์ž„์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ชจ๋‹ˆํ„ฐ๋ง.
  • ๐ŸŽฅ ์˜ํ™” ๋ฐ VFX: ๋ผ์ด๋ธŒ ์• ๋‹ˆ๋ฉ”์ด์…˜ ์ œ์ž‘ ๋ฐ ์‹œ๊ฐ ํšจ๊ณผ.
  • ๐Ÿ›ก๏ธ ์Šค๋งˆํŠธ ๊ฐ์‹œ: ๋‹ค์ค‘ ์ธ๋ฌผ์˜ ์›€์ง์ž„์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๊ฐ์ง€ ๋ฐ ๋ถ„์„.

7. ํ•œ๊ณ„ ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ

  • ๋„คํŠธ์›Œํฌ ๋Œ€์—ญํญ ์‚ฌ์šฉ์ด ๋†’์€ ํ™˜๊ฒฝ์—์„œ๋Š” ์„ฑ๋Šฅ ์ €ํ•˜ ๊ฐ€๋Šฅ์„ฑ.
  • ๊ฐ€๋ ค์ง (Occlusion) ์ƒํ™ฉ์—์„œ ์ผ๋ถ€ ๋ถ€์ •ํ™•ํ•œ ๊ฒฐ๊ณผ ๋ฐœ์ƒ.
  • ๋” ๋งŽ์€ ์นด๋ฉ”๋ผ ๋ทฐ๋ฅผ ํ†ตํ•ฉํ•˜๊ธฐ ์œ„ํ•œ ์Šค์ผ€์ผ๋ง ๋ฌธ์ œ.

8. ๊ฒฐ๋ก 

  • ์ด ์‹œ์Šคํ…œ์€ ๋‹ค์ค‘ RGB-D ๋ทฐ๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋‹ค์ค‘ ์ธ๋ฌผ 3D ํฌ์ฆˆ๋ฅผ ์žฌ๊ตฌ์„ฑํ•˜๋ฉฐ, ๋ผ์ด๋ธŒ ์ŠคํŠธ๋ฆฌ๋ฐ ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜์—์„œ ํšจ์œจ์ ์œผ๋กœ ์ž‘๋™.
  • ๊ฒŒ์ž„, ์˜๋ฃŒ, ๊ฐ์‹œ, ์˜ํ™” ๋“ฑ ๋‹ค์–‘ํ•œ ์‚ฐ์—… ๋ถ„์•ผ์—์„œ ๊ด‘๋ฒ”์œ„ํ•œ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์ž…์ฆ.

๐Ÿ—“๏ธ ์ถœํŒ ์—ฐ๋„: 2023


RGB-D Fusion for Point-Cloud-Based 3D Human Pose Estimation: ๋…ผ๋ฌธ ๊ด€๋ จ ์ •๋ณด

"RGB-D Fusion for Point-Cloud-Based 3D Human Pose Estimation"

๐Ÿšจ ์ฝ”๋“œ: ์ฝ”๋“œ ์—†์Œ

๐Ÿ“š ์ถœ์ฒ˜: J Ying, X Zhao โ€“ 2021 IEEE International Conference on Image Processing (ICIP), 2021

๐Ÿ”— ๋…ผ๋ฌธ ๋งํฌ: IEEE Xplore ๋…ผ๋ฌธ ๋งํฌ

๐Ÿ“„ PDF ๋‹ค์šด๋กœ๋“œ: PDF ํŒŒ์ผ ๋งํฌ

๐Ÿง  ์ €์ž ์ •๋ณด:


1. ์—ฐ๊ตฌ ๋ชฉ์ 

  • RGB-D ์ด๋ฏธ์ง€ (RGB-Depth Images)๋ฅผ ํ™œ์šฉํ•˜์—ฌ 3D ์ธ๊ฐ„ ํฌ์ฆˆ ์ถ”์ • (3D Human Pose Estimation)์„ ๊ฐœ์„ .
  • ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ (Point Cloud)๋ฅผ ์‚ฌ์šฉํ•ด RGB ์ด๋ฏธ์ง€์™€ ๊นŠ์ด ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ฉ.
  • ์ •ํ™•ํ•œ 3D ํฌ์ฆˆ ์ถ”์ •์„ ๋‹ฌ์„ฑํ•˜์—ฌ ๊ธฐ์กด 2D ๊ธฐ๋ฐ˜ ํฌ์ฆˆ ์ถ”์ •์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณต.

2. ๊ธฐ์ˆ ์  ์ ‘๊ทผ๋ฒ•

  1. 2D Pose Estimation Module:
    • RGB ์ด๋ฏธ์ง€์—์„œ 2D ํฌ์ฆˆ ํ‚คํฌ์ธํŠธ (Keypoints)๋ฅผ ์ถ”์ถœ.
    • ๊ณ ํ•ด์ƒ๋„ ์ƒ‰์ƒ ์ •๋ณด๋ฅผ ์‚ฌ์šฉํ•ด ์ดˆ๊ธฐ ํŠน์ง• ํ•™์Šต.
  2. RGB-D Fusion via Point Cloud:
    • RGB์—์„œ ์–ป์€ ์ƒ‰์ƒ ํŠน์ง• (Color Features)๊ณผ ๊นŠ์ด(Depth) ์ •๋ณด๋ฅผ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ (Point Cloud)๋กœ ํ†ตํ•ฉ.
    • ๊ฐ ํฌ์ธํŠธ๋ฅผ ๊ฐœ๋ณ„์ ์œผ๋กœ ํ•™์Šต.
  3. 3D Learning Module:
    • ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ์—์„œ ํฌ์ธํŠธ ๋‹จ์œ„ ํŠน์ง• (Point-wise Features)์„ ์ถ”์ถœ.
    • ๋ณต์žกํ•œ ํฌ์ฆˆ ๊ตฌ์กฐ๋ฅผ ํฌ์ฐฉํ•˜๋„๋ก ์„ค๊ณ„.
  4. Dense Prediction Module:
    • ํฌ์ธํŠธ์—์„œ Offset Vectors ๋ฐ Closeness Scores๋ฅผ ์˜ˆ์ธก.
    • ๊ฐ ํฌ์ธํŠธ์˜ ์˜ˆ์ธก์„ ๊ฐ€์ค‘ ํ‰๊ท ํ•˜์—ฌ ์ตœ์ข… 3D ํฌ์ฆˆ๋ฅผ ์ƒ์„ฑ.

3. ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„

  • ์ž…๋ ฅ: RGB ์ด๋ฏธ์ง€ ๋ฐ ๊นŠ์ด(Depth) ์ด๋ฏธ์ง€.
  • Step 1: 2D Pose Estimation์„ ํ†ตํ•ด RGB ์ด๋ฏธ์ง€์—์„œ ํ‚คํฌ์ธํŠธ ํŠน์ง• ์ถ”์ถœ.
  • Step 2: RGB์™€ Depth๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ Point Cloud๋กœ ๋ณ€ํ™˜.
  • Step 3: 3D Learning Module๋กœ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ํŠน์ง• ํ•™์Šต.
  • Step 4: Dense Prediction Module๋กœ ์ตœ์ข… ํฌ์ฆˆ ํ‚คํฌ์ธํŠธ๋ฅผ ์˜ˆ์ธก.
  • ์ถœ๋ ฅ: ์ตœ์ ํ™”๋œ 3D ์ธ๊ฐ„ ํฌ์ฆˆ ๋ฐ์ดํ„ฐ.

4. ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ

  • ๋ฒค์น˜๋งˆํฌ ๋ฐ์ดํ„ฐ์…‹: MHAD, SURREAL.
  • ์„ฑ๋Šฅ ๊ฐœ์„ : ๊ธฐ์กด RGB ๊ธฐ๋ฐ˜ ๋ชจ๋ธ๋ณด๋‹ค ๋” ๋‚ฎ์€ Mean Per Joint Position Error (MPJPE)๋ฅผ ๋‹ฌ์„ฑ.
  • ๋กœ์ปฌ ๋ฐ ๊ธ€๋กœ๋ฒŒ ํŠน์ง• ํ†ตํ•ฉ: ํฌ์ฆˆ ์ถ”์ •์˜ ๊ฐ•๊ฑด์„ฑ (Robustness) ๋ฐ ์ •ํ™•๋„ ํ–ฅ์ƒ.
  • ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ์ตœ์ ํ™”: ํฌ์ฆˆ ์˜ˆ์ธก ์†๋„์™€ ์ •ํ™•๋„๊ฐ€ ๊ท ํ˜•์„ ์ด๋ฃธ.

5. ์ฃผ์š” ๊ธฐ์—ฌ

  • โœ… RGB-D ํ†ตํ•ฉ: RGB ์ด๋ฏธ์ง€์™€ ๊นŠ์ด ๋ฐ์ดํ„ฐ๋ฅผ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์ •๋ณด ์†์‹ค ์ตœ์†Œํ™”.
  • โœ… 3D Learning Module: ํฌ์ธํŠธ ๋‹จ์œ„์˜ ๋ณต์žกํ•œ ํŠน์ง•์„ ํ•™์Šตํ•˜์—ฌ ํฌ์ฆˆ ์˜ˆ์ธก ์ •ํ™•๋„ ํ–ฅ์ƒ.
  • โœ… Dense Prediction Module: Offset Vectors์™€ Closeness Scores๋กœ ํฌ์ฆˆ ํ‚คํฌ์ธํŠธ ์˜ˆ์ธก ์ตœ์ ํ™”.
  • โœ… ๋ฒค์น˜๋งˆํฌ ๋ฐ์ดํ„ฐ์…‹ ๊ฒ€์ฆ: MHAD ๋ฐ SURREAL ๋ฐ์ดํ„ฐ์…‹์—์„œ ์ตœ์ฒจ๋‹จ (SOTA) ์„ฑ๋Šฅ ๋‹ฌ์„ฑ.

6. ์‘์šฉ ๋ถ„์•ผ

  • ๐Ÿ›ก๏ธ ์Šค๋งˆํŠธ ๊ฐ์‹œ ์‹œ์Šคํ…œ: ์ธ๊ฐ„ ์›€์ง์ž„์„ 3D๋กœ ์ •ํ™•ํ•˜๊ฒŒ ๊ฐ์ง€.
  • ๐ŸŽฎ ๊ฒŒ์ž„ ๋ฐ VR/AR: ํ˜„์‹ค์ ์ธ ์‚ฌ์šฉ์ž ํฌ์ฆˆ ๋ฐ ์›€์ง์ž„ ๋ฐ˜์˜.
  • ๐Ÿฉบ ์˜๋ฃŒ ๋ฐ ์žฌํ™œ: ํ™˜์ž์˜ ์ž์„ธ ๋ฐ ์›€์ง์ž„ ๋ถ„์„.
  • ๐Ÿค– ๋กœ๋ด‡ ๋น„์ „: ๋กœ๋ด‡์ด ์ธ๊ฐ„์˜ 3D ์›€์ง์ž„์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ธ์‹.

7. ํ•œ๊ณ„ ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ

  • ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ๋ฐ์ดํ„ฐ๊ฐ€ ๋ฐ€์ง‘ํ•˜์ง€ ์•Š์„ ๊ฒฝ์šฐ ์ •ํ™•๋„ ์ €ํ•˜ ๊ฐ€๋Šฅ.
  • ๊ทน๋‹จ์  ๊ฐ€๋ ค์ง (Occlusion) ์ƒํ™ฉ์—์„œ์˜ ์˜ˆ์ธก ์˜ค๋ฅ˜ ๋ฐœ์ƒ.
  • ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•œ ์ถ”๊ฐ€ ์ตœ์ ํ™” ํ•„์š”.

8. ๊ฒฐ๋ก 

  • RGB-D Fusion์€ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜ 3D ์ธ๊ฐ„ ํฌ์ฆˆ ์ถ”์ •์˜ ์ •ํ™•๋„์™€ ํšจ์œจ์„ฑ์„ ๊ฐœ์„ .
  • RGB ์ด๋ฏธ์ง€์˜ ๊ณ ํ•ด์ƒ๋„ ํŠน์ง•๊ณผ ๊นŠ์ด ๋ฐ์ดํ„ฐ์˜ ๊ณต๊ฐ„ ์ •๋ณด๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ํ˜„์‹ค์ ์ด๊ณ  ์ •ํ™•ํ•œ ํฌ์ฆˆ ์žฌ๊ตฌ์„ฑ์„ ๋‹ฌ์„ฑ.
  • ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ ์‘์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์ž…์ฆ.

๐Ÿ—“๏ธ ์ถœํŒ ์—ฐ๋„: 2021


Real-time RGBD-Based Extended Body Pose Estimation: ๋…ผ๋ฌธ ๊ด€๋ จ ์ •๋ณด

"Real-time RGBD-Based Extended Body Pose Estimation"

๐Ÿ“š ์ถœ์ฒ˜: R Bashirov, A Ianina, K Iskakov โ€“ Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2021

๐Ÿ”— ๋…ผ๋ฌธ ๋งํฌ: WACV ๋…ผ๋ฌธ ๋งํฌ

๐Ÿ“„ PDF ๋‹ค์šด๋กœ๋“œ: PDF ํŒŒ์ผ ๋งํฌ

๐Ÿง  ์ €์ž ์ •๋ณด:

๐Ÿ“ฆ ์ฝ”๋“œ ์ €์žฅ์†Œ: GitHub Repository


1. ์—ฐ๊ตฌ ๋ชฉ์ 

  • RGB-D ์นด๋ฉ”๋ผ (Kinect Azure RGB-D Camera)๋ฅผ ์‚ฌ์šฉํ•ด ์‹ค์‹œ๊ฐ„ ํ™•์žฅ๋œ ์‹ ์ฒด ํฌ์ฆˆ ์ถ”์ • ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœ.
  • ํŒŒ๋ผ๋ฉ”ํŠธ๋ฆญ 3D ์ธ๊ฐ„ ๋ฉ”์‰ฌ ๋ชจ๋ธ (SMPL-X)์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹ ์ฒด ํฌ์ฆˆ, ์† ํฌ์ฆˆ, ์–ผ๊ตด ํ‘œ์ •์„ ํ†ตํ•ฉ์ ์œผ๋กœ ์˜ˆ์ธก.
  • ์‹ค์‹œ๊ฐ„ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๋†’์€ ์ •ํ™•๋„์™€ ์ผ๊ด€์„ฑ์„ ๋ณด์žฅ.

2. ๊ธฐ์ˆ ์  ์ ‘๊ทผ๋ฒ•

  1. SMPL-X Representation:
    • 3D ๋ณ€ํ˜• ๊ฐ€๋Šฅํ•œ ์ธ๊ฐ„ ๋ฉ”์‰ฌ ๋ชจ๋ธ (Parametric 3D Deformable Human Mesh Model, SMPL-X)์„ ์‚ฌ์šฉํ•˜์—ฌ ์ „์ฒด ์‹ ์ฒด, ์†, ์–ผ๊ตด์„ ํ‘œํ˜„.
  2. Body Pose Estimation:
    • Kinect Azure RGB-D ์นด๋ฉ”๋ผ๋กœ๋ถ€ํ„ฐ ์–ป์€ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•ด ์‹ ์ฒด ํฌ์ฆˆ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์˜ˆ์ธก.
    • AMASS Dataset๊ณผ ์‚ฌ์šฉ์ž ์ •์˜ ๋ฐ์ดํ„ฐ์…‹(56๋ช…์˜ ํฌ์ฆˆ ๋ฐ์ดํ„ฐ)์„ ํ•™์Šต์— ์‚ฌ์šฉ.
  3. Hand Pose Estimation:
    • ๊ธฐ์กด์— ๋ฐœํ‘œ๋œ ์† ํฌ์ฆˆ ์˜ˆ์ธก ๋ชจ๋ธ์„ ์ง์ ‘ ํ™œ์šฉํ•˜์—ฌ ์‹ ์ฒด ํฌ์ฆˆ์™€ ์† ํฌ์ฆˆ๋ฅผ ์ผ๊ด€๋˜๊ฒŒ ํ†ตํ•ฉ.
  4. Facial Expression Estimation:
    • ๋Œ€๊ทœ๋ชจ Talking Face Dataset์œผ๋กœ ํ›ˆ๋ จ๋œ ์–ผ๊ตด ํ‘œ์ • ์ถ”์ถœ๊ธฐ๋ฅผ ์‚ฌ์šฉ.
    • RGB-D ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ด ์–ผ๊ตด ํ‘œ์ • ํŠน์ง•์„ ์„ธ๋ฐ€ํ•˜๊ฒŒ ์ถ”์ถœ.
  5. Temporal Smoothing:
    • ์‹œ๊ฐ„์  ์ผ๊ด€์„ฑ (Temporal Consistency)์„ ์œ ์ง€ํ•˜๊ธฐ ์œ„ํ•ด ์—ฐ์†๋œ ํ”„๋ ˆ์ž„์„ ์ •๊ตํ•˜๊ฒŒ ์กฐ์ •.

3. ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„

  • ์ž…๋ ฅ: RGB-D ๋ฐ์ดํ„ฐ (Kinect Azure).
  • Step 1: RGB-D ์ž…๋ ฅ์—์„œ ๋žœ๋“œ๋งˆํฌ ๊ฒ€์ถœ.
  • Step 2: ์‹ ์ฒด, ์†, ์–ผ๊ตด ํ‘œ์ • ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ •.
  • Step 3: ์‹œ๊ฐ„์  ์ผ๊ด€์„ฑ ๋ณด์ • (Temporal Smoothing).
  • ์ถœ๋ ฅ: ์‹ ์ฒด, ์†, ์–ผ๊ตด ํ‘œ์ •์„ ํฌํ•จํ•œ ํ†ตํ•ฉ 3D ํฌ์ฆˆ ์˜ˆ์ธก.

4. ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ

  • ๋ฒค์น˜๋งˆํฌ ๋ฐ์ดํ„ฐ์…‹: AMASS Dataset, ์‚ฌ์šฉ์ž ์ •์˜ Kinect Azure ๋ฐ์ดํ„ฐ์…‹ (56๋ช…).
  • ์ •ํ™•๋„ ๊ฐœ์„ : RGB ์ „์šฉ (RGB-Only) ๋ฐฉ๋ฒ•๋ณด๋‹ค ๋›ฐ์–ด๋‚œ ์„ฑ๋Šฅ์„ ๋ณด์ž„.
  • ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ: GPU ์„œ๋ฒ„์—์„œ ํ‰๊ท  25 FPS ์œ ์ง€.
  • ์„ฑ๋Šฅ ๋น„๊ต: ๋” ๋А๋ฆฐ RGB-D ์ตœ์ ํ™” ๊ธฐ๋ฐ˜ ์†”๋ฃจ์…˜๊ณผ ์œ ์‚ฌํ•œ ์ •ํ™•๋„ ๋‹ฌ์„ฑ.

5. ์ฃผ์š” ๊ธฐ์—ฌ

  • โœ… SMPL-X ๋ชจ๋ธ ํ™œ์šฉ: ์‹ ์ฒด, ์†, ์–ผ๊ตด์„ ํ†ตํ•ฉ์ ์œผ๋กœ ํ‘œํ˜„.
  • โœ… RGB-D ๊ธฐ๋ฐ˜ ํฌ์ฆˆ ์ถ”์ •: RGB-Only ์ ‘๊ทผ๋ฒ•๋ณด๋‹ค ๋†’์€ ์ •ํ™•๋„ ์ œ๊ณต.
  • โœ… Temporal Smoothing: ํ”„๋ ˆ์ž„ ๊ฐ„ ์ผ๊ด€์„ฑ ์œ ์ง€๋กœ ํฌ์ฆˆ์˜ ์•ˆ์ •์„ฑ ํ–ฅ์ƒ.
  • โœ… ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ: GPU ํ™˜๊ฒฝ์—์„œ ์ดˆ๋‹น 25 ํ”„๋ ˆ์ž„์œผ๋กœ ์•ˆ์ •์ ์ธ ์‹ค์‹œ๊ฐ„ ์˜ˆ์ธก.

6. ์‘์šฉ ๋ถ„์•ผ

  • ๐ŸŽฎ ๊ฒŒ์ž„ ๋ฐ VR/AR: ์บ๋ฆญํ„ฐ ํฌ์ฆˆ์™€ ํ‘œ์ •์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ •ํ™•ํ•˜๊ฒŒ ์žฌํ˜„.
  • ๐Ÿฉบ ์˜๋ฃŒ ๋ฐ ์žฌํ™œ: ํ™˜์ž์˜ ์ž์„ธ ๋ฐ ํ‘œ์ • ๋ถ„์„์„ ํ†ตํ•ด ์น˜๋ฃŒ ๊ณ„ํš ์ˆ˜๋ฆฝ.
  • ๐Ÿ›ก๏ธ ์Šค๋งˆํŠธ ๊ฐ์‹œ ์‹œ์Šคํ…œ: ๋น„์ •์ƒ์ ์ธ ์›€์ง์ž„ ๋ฐ ํ–‰๋™ ๊ฐ์ง€.
  • ๐Ÿค– ๋กœ๋ด‡ ๋น„์ „: ์ธ๊ฐ„ ํฌ์ฆˆ ๋ฐ ํ‘œ์ •์„ ๋ถ„์„ํ•˜์—ฌ ๋กœ๋ด‡๊ณผ ์ž์—ฐ์Šค๋Ÿฌ์šด ์ƒํ˜ธ์ž‘์šฉ ๊ตฌํ˜„.

7. ํ•œ๊ณ„ ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ

  • ๊ฐ€๋ ค์ง (Occlusion) ๋ฌธ์ œ์—์„œ ์„ฑ๋Šฅ ์ €ํ•˜ ๊ฐ€๋Šฅ์„ฑ.
  • ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ ์กฐ๊ฑด (์กฐ๋ช…, ๋ฐฐ๊ฒฝ)์—์„œ์˜ ์ถ”๊ฐ€ ๊ฒ€์ฆ ํ•„์š”.
  • ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค ํ™˜๊ฒฝ์—์„œ์˜ ์„ฑ๋Šฅ ์ตœ์ ํ™” ํ•„์š”.

8. ๊ฒฐ๋ก 

  • RGB-D ๊ธฐ๋ฐ˜ ์‹ค์‹œ๊ฐ„ ํ™•์žฅ ์‹ ์ฒด ํฌ์ฆˆ ์ถ”์ • ์‹œ์Šคํ…œ์€ SMPL-X ๋ชจ๋ธ์„ ํ†ตํ•ด ์‹ ์ฒด, ์†, ์–ผ๊ตด ํฌ์ฆˆ ๋ฐ ํ‘œ์ •์„ ํ†ตํ•ฉ์ ์œผ๋กœ ์˜ˆ์ธก.
  • ์‹œ๊ฐ„์  ์ผ๊ด€์„ฑ์„ ๋ณด์žฅํ•˜๋ฉฐ ๋†’์€ ์ •ํ™•๋„์™€ ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ ์†๋„๋ฅผ ๋‹ฌ์„ฑ.
  • ๊ฒŒ์ž„, ์˜๋ฃŒ, ๊ฐ์‹œ, ๋กœ๋ด‡ ๊ณตํ•™ ๋“ฑ ๋‹ค์–‘ํ•œ ์‘์šฉ ๋ถ„์•ผ์— ํšจ๊ณผ์ ์œผ๋กœ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์Œ.

๐Ÿ—“๏ธ ์ถœํŒ ์—ฐ๋„: 2021


A Method for 3D Human Pose Estimation based on 2D Keypoint Detection using RGB-D Information: ๋…ผ๋ฌธ ๊ด€๋ จ ์ •๋ณด

"A Method for 3D Human Pose Estimation based on 2D Keypoint Detection using RGB-D Information"

๐Ÿ“š ์ถœ์ฒ˜: Seohee Park, Myunggeun Ji, Junchul Chun โ€“ Journal of Internet Computing and Services, 2018

๐Ÿ”— ๋…ผ๋ฌธ ๋งํฌ: Journal of Internet Computing and Services ๋งํฌ

๐Ÿ“„ DOI: 10.7472/jksii.2018.19.6.41

๐Ÿง  ์ €์ž ์ •๋ณด:

๐Ÿ“ฆ ๋…ผ๋ฌธ์ด ์ฐธ๊ณ ํ•œ ์ฝ”๋“œ ์ €์žฅ์†Œ:


1. ์—ฐ๊ตฌ ๋ชฉ์ 

  • ์˜์ƒ ๊ฐ์‹œ (Video Surveillance) ๋ถ„์•ผ์—์„œ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ์ธ๊ฐ„ ํฌ์ฆˆ ์ถ”์ •์„ ๊ตฌํ˜„.
  • RGB-D ๋ฐ์ดํ„ฐ (RGB์™€ ๊นŠ์ด ์ •๋ณด)๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ฐ€๋ ค์ง (Occlusion) ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐ.
  • 2D ํ‚คํฌ์ธํŠธ ๊ฒ€์ถœ (2D Keypoint Detection)์„ ํ†ตํ•ด ์ธ๊ฐ„ ํฌ์ฆˆ๋ฅผ ์˜ˆ์ธกํ•œ ํ›„, 3D ํฌ์ฆˆ๋กœ ํ™•์žฅ.

2. ๊ธฐ์ˆ ์  ์ ‘๊ทผ๋ฒ•

  1. RGB-D ๋ฐ์ดํ„ฐ ํ™œ์šฉ:
    • ๊ธฐ์กด RGB ๋ฐ์ดํ„ฐ์— ๊นŠ์ด(Depth) ์ •๋ณด๋ฅผ ์ถ”๊ฐ€ํ•˜์—ฌ ๊ฐ์ฒด ๊ฐ์ง€์˜ ์ •ํ™•๋„๋ฅผ ๋†’์ž„.
  2. 2D ํ‚คํฌ์ธํŠธ ๊ฒ€์ถœ:
    • ์ปจ๋ณผ๋ฃจ์…˜ ์‹ ๊ฒฝ๋ง (CNN)์„ ์‚ฌ์šฉํ•˜์—ฌ ์ธ๊ฐ„ ๊ด€์ ˆ 14๊ฐœ์˜ 2D ํ‚คํฌ์ธํŠธ๋ฅผ ๊ฒ€์ถœ.
  3. 3D ํฌ์ฆˆ ํ™•์žฅ:
    • ์˜ˆ์ธก๋œ 2D ํ‚คํฌ์ธํŠธ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ 3D ๊ณต๊ฐ„์œผ๋กœ ํ™•์žฅํ•˜์—ฌ ํฌ์ฆˆ๋ฅผ ์žฌ๊ตฌ์„ฑ.
    • ๊นŠ์ด ์ •๋ณด๋ฅผ ํ™œ์šฉํ•ด Self-Occlusion ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐ.
  4. Occlusion ๋ฌธ์ œ ํ•ด๊ฒฐ:
    • ๊ฐ์ฒด๊ฐ€ ๋‹ค๋ฅธ ๋ฌผ์ฒด์— ๊ฐ€๋ ค์กŒ์„ ๋•Œ ๋ฐœ์ƒํ•˜๋Š” ๊ฐ€๋ ค์ง ๋ฌธ์ œ๋ฅผ RGB-D ๋ฐ์ดํ„ฐ์˜ ๊นŠ์ด ์ •๋ณด๋ฅผ ํ™œ์šฉํ•˜์—ฌ ํ•ด๊ฒฐ.

3. ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„

  • ์ž…๋ ฅ: RGB ์ด๋ฏธ์ง€ ๋ฐ ๊นŠ์ด(Depth) ๋ฐ์ดํ„ฐ.
  • Step 1: RGB-D ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•ด ๊ฐ์ฒด ๊ฐ์ง€ ๋ฐ 2D ํ‚คํฌ์ธํŠธ ์˜ˆ์ธก.
  • Step 2: CNN์„ ํ†ตํ•ด 14๊ฐœ ๊ด€์ ˆ์˜ ํ‚คํฌ์ธํŠธ ๊ฒ€์ถœ.
  • Step 3: ๊นŠ์ด ์ •๋ณด๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ํ‚คํฌ์ธํŠธ๋ฅผ 3D๋กœ ๋ณ€ํ™˜.
  • Step 4: Self-Occlusion ๋ฌธ์ œ๋ฅผ ๋ณด์ •ํ•˜์—ฌ ์ตœ์ข… 3D ํฌ์ฆˆ ์ƒ์„ฑ.
  • ์ถœ๋ ฅ: 3D ์ธ๊ฐ„ ํฌ์ฆˆ ์˜ˆ์ธก ๊ฒฐ๊ณผ.

4. ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ

  • ๋ฐ์ดํ„ฐ์…‹: ์ž์ฒด ์‹คํ—˜ ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ์…‹ ์‚ฌ์šฉ.
  • ์ •ํ™•๋„ ๊ฐœ์„ : ๊นŠ์ด ๋ฐ์ดํ„ฐ๋ฅผ ์ถ”๊ฐ€ํ•จ์œผ๋กœ์จ ๊ธฐ์กด 2D ํฌ์ฆˆ ์ถ”์ •๋ณด๋‹ค ์ •ํ™•๋„๊ฐ€ ํ–ฅ์ƒ๋จ.
  • Occlusion ๋ฌธ์ œ ํ•ด๊ฒฐ: Self-Occlusion ํ˜„์ƒ์ด ๋ณด์ •๋˜์–ด ํฌ์ฆˆ ์žฌ๊ตฌ์„ฑ์˜ ์‹ ๋ขฐ๋„๊ฐ€ ํ–ฅ์ƒ๋จ.
  • ์‘์šฉ ์‚ฌ๋ก€: ์ธ๊ฐ„ ํ–‰๋™ ์ธ์‹, ๋น„์ •์ƒ ํ–‰๋™ ํƒ์ง€.

5. ์ฃผ์š” ๊ธฐ์—ฌ

  • โœ… RGB-D ๋ฐ์ดํ„ฐ ํ†ตํ•ฉ: RGB์™€ ๊นŠ์ด ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๊ฐ€๋ ค์ง ๋ฌธ์ œ ํ•ด๊ฒฐ.
  • โœ… 2D ํ‚คํฌ์ธํŠธ ๊ธฐ๋ฐ˜ ํฌ์ฆˆ ์ถ”์ •: 14๊ฐœ์˜ ํ‚คํฌ์ธํŠธ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๊ฒ€์ถœ.
  • โœ… 3D ํฌ์ฆˆ ํ™•์žฅ: ๊นŠ์ด ์ •๋ณด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ 2D ํ‚คํฌ์ธํŠธ๋ฅผ 3D ๊ณต๊ฐ„์œผ๋กœ ํ™•์žฅ.
  • โœ… Self-Occlusion ๋ฌธ์ œ ํ•ด๊ฒฐ: ๊ฐ€๋ ค์ง ํ˜„์ƒ์„ ๋ณด์ •ํ•˜์—ฌ ํฌ์ฆˆ ์ •ํ™•๋„ ๊ฐœ์„ .

6. ์‘์šฉ ๋ถ„์•ผ

  • ๐Ÿ›ก๏ธ ์Šค๋งˆํŠธ ๊ฐ์‹œ ์‹œ์Šคํ…œ: ๋น„์ •์ƒ ํ–‰๋™ ๋ฐ ๋น„์ƒ ์ƒํ™ฉ ๊ฐ์ง€.
  • ๐ŸŽฎ ๊ฒŒ์ž„ ๋ฐ VR/AR: ํ˜„์‹ค๊ฐ ์žˆ๋Š” ์บ๋ฆญํ„ฐ ์›€์ง์ž„ ์ƒ์„ฑ.
  • ๐Ÿฉบ ์˜๋ฃŒ ์žฌํ™œ: ํ™˜์ž์˜ ์›€์ง์ž„ ๋ฐ ์ž์„ธ ๋ถ„์„.
  • ๐Ÿค– ๋กœ๋ด‡ ๋น„์ „: ๋กœ๋ด‡์ด ์ธ๊ฐ„์˜ 3D ํฌ์ฆˆ๋ฅผ ์ •ํ™•ํžˆ ์ธ์‹ ๋ฐ ์ƒํ˜ธ์ž‘์šฉ.

7. ํ•œ๊ณ„ ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ

  • ๊นŠ์ด ๋ฐ์ดํ„ฐ ํ’ˆ์งˆ ์ €ํ•˜: ๊นŠ์ด ์„ผ์„œ์˜ ํ’ˆ์งˆ์— ๋”ฐ๋ผ ์ •ํ™•๋„๊ฐ€ ์ €ํ•˜๋  ์ˆ˜ ์žˆ์Œ.
  • ๊ฐ€๋ ค์ง์ด ์‹ฌํ•œ ์ƒํ™ฉ: ์‹ฌ๊ฐํ•œ Occlusion์ด ์žˆ๋Š” ๊ฒฝ์šฐ ์ •ํ™•๋„๊ฐ€ ์ œํ•œ๋  ๊ฐ€๋Šฅ์„ฑ.
  • ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ ์ตœ์ ํ™”: ์‹ค์‹œ๊ฐ„ ์‹œ์Šคํ…œ์„ ์œ„ํ•ด ๊ณ„์‚ฐ ์†๋„ ๊ฐœ์„  ํ•„์š”.

8. ๊ฒฐ๋ก 

  • RGB-D ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•œ 3D ์ธ๊ฐ„ ํฌ์ฆˆ ์ถ”์ •์€ Self-Occlusion ๋ฌธ์ œ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•ด๊ฒฐํ•˜๋ฉฐ, ๋” ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑํ•จ.
  • 2D ํ‚คํฌ์ธํŠธ ๊ฒ€์ถœ๊ณผ 3D ํฌ์ฆˆ ํ™•์žฅ์˜ ๊ฒฐํ•ฉ์€ ๋‹ค์–‘ํ•œ ์‘์šฉ ๋ถ„์•ผ์—์„œ ์œ ์šฉํ•˜๊ฒŒ ํ™œ์šฉ๋  ์ˆ˜ ์žˆ์Œ.
  • ์Šค๋งˆํŠธ ๊ฐ์‹œ, ์˜๋ฃŒ, ๋กœ๋ด‡ ๊ธฐ์ˆ  ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋Š” ๊ฐ€๋Šฅ์„ฑ์„ ์ž…์ฆํ•จ.

๐Ÿ—“๏ธ ์ถœํŒ ์—ฐ๋„: 2018


์ด๋ฒคํŠธ ์นด๋ฉ”๋ผ

Efficient Human Pose Estimation via 3D Event Point Cloud: ๋…ผ๋ฌธ ๊ด€๋ จ ์ •๋ณด

"Efficient Human Pose Estimation via 3D Event Point Cloud"

๐Ÿ“š ์ถœ์ฒ˜: Jiaan Chen, Hao Shi, Yaozu Ye, Kailun Yang, Lei Sun, Kaiwei Wang โ€“ 2022 International Conference on 3D Vision (3DV), 2022

๐Ÿ”— ๋…ผ๋ฌธ ๋งํฌ: arXiv ๋งํฌ

๐Ÿ“„ DOI: 10.48550/arXiv.2206.04511

๐Ÿง  ์ €์ž ์ •๋ณด:

๐Ÿ“ฆ ์ฝ”๋“œ ์ €์žฅ์†Œ: GitHub Repository


1. ์—ฐ๊ตฌ ๋ชฉ์ 

  • ์ด๋ฒคํŠธ ๊ธฐ๋ฐ˜ (Event-Based) ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ 3D ์ธ๊ฐ„ ํฌ์ฆˆ ์ถ”์ • (3D Human Pose Estimation, HPE)์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ˆ˜ํ–‰.
  • RGB ์ด๋ฏธ์ง€ ๊ธฐ๋ฐ˜ ํฌ์ฆˆ ์ถ”์ •์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ณ , ๊ทน๋‹จ์  ํ™˜๊ฒฝ(Extreme Scenes) ๋ฐ ํšจ์œจ์„ฑ ์ค‘์‹ฌ ์กฐ๊ฑด (Efficiency-Critical Conditions)์—์„œ ์„ฑ๋Šฅ์„ ์ตœ์ ํ™”.
  • ์ƒˆ๋กœ์šด ์ด๋ฒคํŠธ ํ‘œํ˜„ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋ฉ”๋ชจ๋ฆฌ ์‚ฌ์šฉ๋Ÿ‰ ๋ฐ ๊ณ„์‚ฐ ๋ณต์žก๋„๋ฅผ ์ค„์ด๋ฉด์„œ ๋†’์€ ์ •ํ™•๋„๋ฅผ ๋‹ฌ์„ฑ.

2. ๊ธฐ์ˆ ์  ์ ‘๊ทผ๋ฒ•

  1. Rasterized Event Point Cloud Representation:
    • ์ด๋ฒคํŠธ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ๋ฅผ ์†Œํ˜• ์‹œ๊ฐ„ ๋‹จ์œ„(Time Slice)๋กœ ๋‚˜๋ˆ„์–ด ๋ผ์Šคํ„ฐํ™” (Rasterization).
    • ํ†ต๊ณ„์  ํŠน์ง•์„ ์‚ฌ์šฉํ•ด 3D ๊ณต๊ฐ„ ์ •๋ณด๋ฅผ ์œ ์ง€ํ•˜๋ฉด์„œ ๋ฉ”๋ชจ๋ฆฌ ๋ฐ ๊ณ„์‚ฐ ์š”๊ตฌ์‚ฌํ•ญ ์ตœ์†Œํ™”.
  2. Backbone Network Integration:
    • ์„ธ ๊ฐ€์ง€ ๋Œ€ํ‘œ์ ์ธ ๋ฐฑ๋ณธ ๋„คํŠธ์›Œํฌ ์ ์šฉ:
      • PointNet: ๋†’์€ ์ฒ˜๋ฆฌ ์†๋„.
      • DGCNN (Dynamic Graph CNN): ๊ทธ๋ž˜ํ”„ ๊ธฐ๋ฐ˜ ํŠน์ง• ํ•™์Šต.
      • Point Transformer: ๊ฐ€์žฅ ๋†’์€ ์ •ํ™•๋„ ์ œ๊ณต.
  3. Linear Layer Decoder:
    • ๋‘ ๊ฐœ์˜ ์„ ํ˜• ๊ณ„์ธต(Linear Layers)์„ ์‚ฌ์šฉํ•˜์—ฌ ์ตœ์ข… ํ‚คํฌ์ธํŠธ (Keypoints) ์œ„์น˜ ์˜ˆ์ธก.
  4. Optimization for Real-Time Inference:
    • NVIDIA Jetson Xavier NX์™€ ๊ฐ™์€ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค (Edge Devices)์—์„œ ์ตœ์ ํ™”.

3. ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„

  • ์ž…๋ ฅ: 3D ์ด๋ฒคํŠธ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ๋ฐ์ดํ„ฐ.
  • Step 1: ์ด๋ฒคํŠธ ๋ฐ์ดํ„ฐ๋ฅผ ๋ผ์Šคํ„ฐํ™”ํ•˜์—ฌ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ๋กœ ๋ณ€ํ™˜.
  • Step 2: PointNet, DGCNN, Point Transformer ๋ฐฑ๋ณธ์œผ๋กœ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ ํŠน์ง• ํ•™์Šต.
  • Step 3: ๋‘ ๊ฐœ์˜ ์„ ํ˜• ๋””์ฝ”๋”๋กœ 3D ํ‚คํฌ์ธํŠธ ์˜ˆ์ธก.
  • Step 4: ์‹œ๊ฐ„ ์ผ๊ด€์„ฑ (Temporal Consistency) ๋ฐ ์ตœ์ข… ํฌ์ฆˆ ์ตœ์ ํ™”.
  • ์ถœ๋ ฅ: 3D ์ธ๊ฐ„ ํฌ์ฆˆ ์˜ˆ์ธก.

4. ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ

  • ๋ฒค์น˜๋งˆํฌ ๋ฐ์ดํ„ฐ์…‹: DHP19 Dataset.
  • ์ •ํ™•๋„:
    • PointNet: MPJPE3D (Mean Per Joint Position Error) 82.46mm.
    • Point Transformer: ๊ฐ€์žฅ ๋†’์€ ์ •ํ™•๋„ ์ œ๊ณต.
  • ์ฒ˜๋ฆฌ ์†๋„: NVIDIA Jetson Xavier NX ๊ธฐ์ค€ 12.29ms์˜ ์ง€์—ฐ ์‹œ๊ฐ„ (latency).
  • ๋ฆฌ์†Œ์Šค ์‚ฌ์šฉ: ํšจ์œจ์ ์ธ ๋ฉ”๋ชจ๋ฆฌ ๋ฐ ์—ฐ์‚ฐ ์ตœ์ ํ™”๋กœ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค์—์„œ๋„ ๊ฐ•๋ ฅํ•œ ์„ฑ๋Šฅ ์ œ๊ณต.

5. ์ฃผ์š” ๊ธฐ์—ฌ

  • โœ… Rasterized Event Point Cloud: ์‹œ๊ฐ„ ๋‹จ์œ„๋กœ ๋ผ์Šคํ„ฐํ™”ํ•˜์—ฌ ๊ณ„์‚ฐ ๋ณต์žก๋„ ์ตœ์†Œํ™”.
  • โœ… Backbone Integration: PointNet, DGCNN, Point Transformer์˜ ๋น„๊ต ๋ฐ ์„ฑ๋Šฅ ๋ถ„์„.
  • โœ… Linear Decoder: ํšจ์œจ์ ์ธ ํ‚คํฌ์ธํŠธ ์˜ˆ์ธก.
  • โœ… Real-Time Edge Processing: NVIDIA Jetson Xavier NX์—์„œ 12.29ms์˜ ๋‚ฎ์€ ์ง€์—ฐ ์‹œ๊ฐ„ ๋‹ฌ์„ฑ.

6. ์‘์šฉ ๋ถ„์•ผ

  • ๐ŸŽฎ ๊ฒŒ์ž„ ๋ฐ VR/AR: ๊ทน๋‹จ์  ํ™˜๊ฒฝ์—์„œ๋„ ์‚ฌ์šฉ์ž ์›€์ง์ž„์„ ์ •ํ™•ํ•˜๊ฒŒ ๋ฐ˜์˜.
  • ๐Ÿฉบ ์˜๋ฃŒ ์žฌํ™œ: ํ™˜์ž์˜ ์›€์ง์ž„๊ณผ ์ž์„ธ๋ฅผ ์‹ค์‹œ๊ฐ„์œผ๋กœ ๋ถ„์„.
  • ๐Ÿ›ก๏ธ ์Šค๋งˆํŠธ ๊ฐ์‹œ: ์–ด๋‘์šด ํ™˜๊ฒฝ์ด๋‚˜ ๋น ๋ฅธ ์›€์ง์ž„์—์„œ๋„ ์‹ ๋ขฐํ•  ์ˆ˜ ์žˆ๋Š” ํ–‰๋™ ๊ฐ์ง€.
  • ๐Ÿค– ๋กœ๋ด‡ ๋น„์ „: ์ด๋ฒคํŠธ ์นด๋ฉ”๋ผ๋ฅผ ํ†ตํ•ด ๋น ๋ฅด๊ฒŒ ์ธ๊ฐ„ ํ–‰๋™์„ ์ธ์‹.

7. ํ•œ๊ณ„ ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ

  • ๋‚ฎ์€ ํ•ด์ƒ๋„์˜ ์ด๋ฒคํŠธ ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ์—์„œ ์ •ํ™•๋„๊ฐ€ ์ œํ•œ๋  ๊ฐ€๋Šฅ์„ฑ.
  • ๋น ๋ฅธ ์›€์ง์ž„์—์„œ์˜ ๋…ธ์ด์ฆˆ ๋ฐœ์ƒ ๊ฐ€๋Šฅ์„ฑ.
  • ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ ๋ฐ ๋” ํฐ ๋ฐ์ดํ„ฐ์…‹์—์„œ ์ถ”๊ฐ€์ ์ธ ๊ฒ€์ฆ ํ•„์š”.

8. ๊ฒฐ๋ก 

  • Efficient Human Pose Estimation via 3D Event Point Cloud๋Š” ์ด๋ฒคํŠธ ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ๋กœ ์‹ค์‹œ๊ฐ„ 3D ํฌ์ฆˆ ์˜ˆ์ธก์„ ์œ„ํ•œ ํ˜์‹ ์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์‹œ.
  • ์†๋„์™€ ์ •ํ™•๋„ ๋ชจ๋‘๋ฅผ ๋‹ฌ์„ฑํ•˜๋ฉฐ ์—ฃ์ง€ ๋””๋ฐ”์ด์Šค์—์„œ๋„ ๊ฐ•๋ ฅํ•œ ์„ฑ๋Šฅ์„ ์ž…์ฆ.
  • ๊ฒŒ์ž„, ์˜๋ฃŒ, ์Šค๋งˆํŠธ ๊ฐ์‹œ, ๋กœ๋ด‡ ๋น„์ „ ๋“ฑ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์—์„œ์˜ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ํ™•์ธ.

๐Ÿ—“๏ธ ์ถœํŒ ์—ฐ๋„: 2022


์ฃผ์ œ

  • ์‚ฌ๋žŒ์˜ 3d ํฌ์ฆˆ ์ถ”์ •(HPE, Human Pose Estimation)
    ์•ž์—์„œ๋Š” ์„ ํƒํ•œ ๋…ผ๋ฌธ๋“ค์˜ ์š”์•ฝ์„ ์‚ดํŽด๋ณด์•˜๋‹ค๋ฉด ์ด์ œ๋Š” ์„ค๋ช…์„ ํ•˜๋ ค๊ณ  ํ•œ๋‹ค. 2024๋…„ 11์›”์— ๋‚˜์˜จ ๋ฆฌ๋ทฐ ๋…ผ๋ฌธ์ด ์žˆ์–ด์„œ ์ฝ๊ณ  ์•ฝ๊ฐ„์˜ ์„ค๋ช…์„ ํ•จ๊ป˜ ๋ถ™์—ฌ๋†“๋ ค๊ณ  ํ•œ๋‹ค.

๋น„๊ต ๋…ผ๋ฌธ ๋‚ด์šฉ

ํ‰๊ฐ€ ์š”์†Œ

Motion Capture ์‹œ์Šคํ…œ์˜ ์„ค๊ณ„ ๋ฐ ํ‰๊ฐ€ ํ•„์ˆ˜ ์š”์†Œ๋“ค

ํ‰๊ฐ€ ์š”์†Œ ์„ค๋ช…

์˜์–ด ํ•œ๊ตญ์–ด ์„ค๋ช… ์‚ฌ์šฉ๋˜๋Š” ์ง€ํ‘œ
Accuracy ์ •ํ™•๋„ ๋ชจ์…˜ ์บก์ฒ˜์˜ ๋†’์€ ์ •๋ฐ€๋„ Mean Per Joint Position Error(MPJPE), Mean Per Joint Rotation Error(MPJRE)
Robustness ๊ฐ•๊ฑด์„ฑ ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ(์กฐ๋ช…, ๊ฐ€๋ ค์ง„ ์ƒํƒœ ๋“ฑ)์—์„œ์˜ ์‹ ๋ขฐ์„ฑ, ์•ˆ์ •์„ฑ Average Precision(AP), Percentage of Correct KeyPoints(PCK)
Smoothness ๋ถ€๋“œ๋Ÿฌ์›€ ๋ชจ์…˜์˜ ์‹œ๊ฐ„์  ์ผ๊ด€์„ฑ, ๋ถ€๋“œ๋Ÿฌ์šด ๋ชจ์…˜ ์บก์ฒ˜ Acceleration Error1, Jitter Error2
Lightweight ๊ฐ€๋ฒผ์›€ ๊ณ„์‚ฐ ํšจ์œจ์„ฑ, ์‹ค์‹œ๊ฐ„์„ฑ, ํ•˜๋“œ์›จ์–ด ์š”๊ตฌ ์‚ฌํ•ญ ๊ด€๋ จ Frames Per Second(FPS), number of parameters, memory cosumption

2D human pose estimation

1) Top-down ๋ฐฉ์‹
2) Bottom-up ๋ฐฉ์‹

Monocular 3D human pose estimation

1) Multi-Person Architecture
๋‹ค์ค‘ ์ธ๋ฌผ ์‹œ๋‚˜๋ฆฌ์˜ค์˜ ๋ชจ๋…ธํ˜๋Ÿฌ ์นด๋ฉ”๋ผ ๊ธฐ๋ฐ˜ 3D ์‚ฌ๋žŒ ์ž์„ธ ์ถ”์ •์€ ํฌ๊ฒŒ 2๊ฐ€์ง€๋กœ ๋‚˜๋‰œ๋‹ค.

  • Lifting-based methods:
    • 2D Human Pose Estimation์˜ 3D ๊ณต๊ฐ„์œผ๋กœ ๋ณ€ํ™˜ํ•˜๋Š” ๋ฐฉ๋ฒ•.
      • ์˜ˆ) Martinez : 2D human pose(input) + adapting a suitable network structure -> 3D human pose(output)
      • ์˜ˆ) VideoPose : 2D human pose(input) + utilizes temporal information -> 3D human pose(output)
  • Direct Estimation methods:
    • 2D ์ž…๋ ฅ ์ด๋ฏธ์ง€์—์„œ 3D ํฌ์ฆˆ๋กœ ์ง์ ‘ ๋ณ€ํ™˜ํ•˜๋Š” ๋ฐฉ๋ฒ•.
      • Top-down
        ์‚ฌ๋žŒ ํƒ์ง€๊ธฐ -> ๊ฐ ๊ฐœ์ธ ๊ฐ์ง€ + ์ž๋ฅด๊ธฐ -> 3D ํฌ์ฆˆ ์ถ”์ •
        • ์˜ˆ) CLIFF,
      • Bottom-up
        ์ถ”๋ก  ์†๋„ ์ €ํ•˜ํ•˜์ง€ X, ๋‹ค๋ฅธ ์ธ์ฒด ๊ตฌ๋ณ„ํ•˜๋Š”๋ฐ ์ค‘์ 
        • ์˜ˆ) XNect,LCR-Net, ROMP

2) Performance Enhancement
์นด๋ฉ”๋ผ ์ž…๋ ฅ์— ์˜์กดํ•˜๋‹ค๋ณด๋‹ˆ, ์ •ํ™•๋„ ๋†’์ด๊ธฐ ์œ„ํ•œ Camera model ๊ฐœ์„ , ๋ณด์กฐ ์ •๋ณด(Auxiliary Information) ํ™œ์šฉ, ์ƒˆ๋กœ์šด ํ‘œํ˜„(new representation) ์‚ฌ์šฉ ํ•˜๋Š” ๊ฒƒ.

3) Reality Enhancement
๋–จ๋ฆผ, ๋ฌผ๋ฆฌ ๋ฒ•์น™ ์œ„๋ฐ˜, ์ธ๊ฐ„ ์–ผ๊ตด ์† ์„ธ๋ถ€ ์‚ฌํ•ญ ๋ถ€์กฑ์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•˜๋Š” ๊ฒƒ.
ํ›„์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•, Physical Constraints(๋ฌผ๋ฆฌ์  ์ œ์•ฝ) ํ†ตํ•ฉ, ์ž์„ธ ์ถ”์ • ๋ฐฉ๋ฒ• ์œ„ํ•œ Whole-body models ๊ฐœ๋ฐœ ๋“ฑ.

general pipeline for developing an application-oriented Monocular 3D human Pose Estimation method ์ผ๋ฐ˜์ ์ธ ํŒŒ์ดํ”„๋ผ์ธ

ํ˜„์žฌ ๋ฐœ์ƒํ•œ ๋ฌธ์ œ์ ,

tram์˜ ๊ฒฝ์šฐ DROID-SLAM์ด ์“ฐ์ด๋Š”๋ฐ, Droid-Slam์˜ ๊ฒฝ์šฐ ์ถ”๋ก  ๋ชจ๋ธ๋งŒ 11GB์ด๋‹ค. ๋‚ด๊ฐ€ ๊ฐ€์ง€๊ณ  ์žˆ๋Š” ๋…ธํŠธ๋ถ GPU๋Š” 8GB๋ผ์„œ, ํ•ด๊ฒฐ ๋ฐฉ๋ฒ•์„ ์ฐพ๋“ ์ง€ ์•„๋‹ˆ๋ฉด, ๋‹ค๋ฅธ ๋ชจ๋ธ์„ ์ฐพ์•„์•ผ ํ•  ๊ฒƒ ๊ฐ™๋‹ค.

๊ณ ๋ฅธ ๊ฒƒ

RGB-D ๊ธฐ๋ฐ˜์˜ 3D ํฌ์ฆˆ ์ถ”์ •

๋ชจ๋ธ

model ๋ช… ์—ฐ๋„ ํŠน์ง• ํ•™ํšŒ input output ๋‹จ์ 
Real-time RGBD-Based Extended Body Pose Estimation 2021 RGB-D ์นด๋ฉ”๋ผ ๊ธฐ๋ฐ˜ ์‹ค์‹œ๊ฐ„ ํ™•์žฅ๋œ ์‹ ์ฒด ํฌ์ฆˆ ์ถ”์ • WACV RGB-D ์ด๋ฏธ์ง€ 3D ํฌ์ฆˆ ๊ฐ€๋ ค์ง ๋ฌธ์ œ์— ๋Œ€ํ•œ ํ•œ๊ณ„์ , ๋ถ€์ž์—ฐ์„ฑ, ํŠน์ • ๋””๋ฐ”์ด์Šค ํ•„์š”
HuMoR 2021 ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ž์„ธ ์ถ”์ •, ๊ฐ€๋ ค์ง ๊ฐ•ํ•จ ICCV RGB-D ์ด๋ฏธ์ง€
3D ํฌ์ธํŠธ ํด๋ผ์šฐ๋“œ
2D ํ‚คํฌ์ธํŠธ
3D ํฌ์ฆˆ ์‹ค์‹œ๊ฐ„์„ฑ, ๋“ฑ ๊ฒฐ๊ณผ ๋ฐ์ดํ„ฐ ์—†์Œ
๋…ผ๋ฌธ ๊ด€๋ จ ์ •๋ณด!

"Real-time RGBD-Based Extended Body Pose Estimation"

๐Ÿ“š ์ถœ์ฒ˜: R Bashirov, A Ianina, K Iskakov โ€“ *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)*, 2021

๐Ÿ”— ๋…ผ๋ฌธ ๋งํฌ: WACV ๋…ผ๋ฌธ ๋งํฌ

๐Ÿ“„ PDF ๋‹ค์šด๋กœ๋“œ: PDF ํŒŒ์ผ ๋งํฌ

๐Ÿง  ์ €์ž ์ •๋ณด:

๐Ÿ“ฆ ์ฝ”๋“œ ์ €์žฅ์†Œ: GitHub Repository


1. ์—ฐ๊ตฌ ๋ชฉ์ 

โœ… RGB-D ์นด๋ฉ”๋ผ(Kinect Azure RGB-D Camera)๋ฅผ ์‚ฌ์šฉํ•ด ์‹ค์‹œ๊ฐ„ ํ™•์žฅ๋œ ์‹ ์ฒด ํฌ์ฆˆ ์ถ”์ •(Extended Body Pose Estimation) ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœ.

โœ… ํŒŒ๋ผ๋ฉ”ํŠธ๋ฆญ 3D ์ธ๊ฐ„ ๋ฉ”์‰ฌ ๋ชจ๋ธ(SMPL-X)์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹ ์ฒด ํฌ์ฆˆ, ์† ํฌ์ฆˆ, ์–ผ๊ตด ํ‘œ์ •์„ ํ†ตํ•ฉ์ ์œผ๋กœ ์˜ˆ์ธก.

โœ… ์‹ค์‹œ๊ฐ„ ์„ฑ๋Šฅ์„ ์œ ์ง€ํ•˜๋ฉด์„œ ๋†’์€ ์ •ํ™•๋„์™€ ์ผ๊ด€์„ฑ์„ ๋ณด์žฅ.

2. ๊ธฐ์ˆ ์  ์ ‘๊ทผ๋ฒ•

  • SMPL-X Representation: 3D ๋ณ€ํ˜• ๊ฐ€๋Šฅํ•œ ์ธ๊ฐ„ ๋ฉ”์‰ฌ ๋ชจ๋ธ(SMPL-X) ์‚ฌ์šฉ.
  • Body Pose Estimation: Kinect Azure RGB-D ์นด๋ฉ”๋ผ ๋ฐ์ดํ„ฐ ์‚ฌ์šฉ.
  • Hand Pose Estimation: ๊ธฐ์กด ์† ํฌ์ฆˆ ์˜ˆ์ธก ๋ชจ๋ธ ํ™œ์šฉ.
  • Facial Expression Estimation: ์–ผ๊ตด ํ‘œ์ • ํŠน์ง•์„ ์„ธ๋ฐ€ํ•˜๊ฒŒ ์ถ”์ถœ.
  • Temporal Smoothing: ์‹œ๊ฐ„์  ์ผ๊ด€์„ฑ์„ ์œ ์ง€.

3. ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์„ค๊ณ„

โœ… ์ž…๋ ฅ: RGB-D ๋ฐ์ดํ„ฐ(Kinect Azure).

โœ… Step 1: RGB-D ์ž…๋ ฅ์—์„œ ๋žœ๋“œ๋งˆํฌ ๊ฒ€์ถœ.

โœ… Step 2: ์‹ ์ฒด, ์†, ์–ผ๊ตด ํ‘œ์ • ํŒŒ๋ผ๋ฏธํ„ฐ ์ถ”์ •.

โœ… Step 3: ์‹œ๊ฐ„์  ์ผ๊ด€์„ฑ ๋ณด์ •.

โœ… ์ถœ๋ ฅ: ์‹ ์ฒด, ์†, ์–ผ๊ตด ํ‘œ์ •์„ ํฌํ•จํ•œ ํ†ตํ•ฉ 3D ํฌ์ฆˆ ์˜ˆ์ธก.

4. ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ

โœ… ๋ฒค์น˜๋งˆํฌ ๋ฐ์ดํ„ฐ์…‹: AMASS Dataset, Kinect Azure ๋ฐ์ดํ„ฐ์…‹(56๋ช…).

โœ… ์ •ํ™•๋„ ๊ฐœ์„ : RGB ์ „์šฉ ๋ฐฉ๋ฒ•๋ณด๋‹ค ๋†’์€ ์„ฑ๋Šฅ.

โœ… ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ: GPU ์„œ๋ฒ„์—์„œ ํ‰๊ท  25 FPS ์œ ์ง€.

5. ์ฃผ์š” ๊ธฐ์—ฌ

โœ… SMPL-X ๋ชจ๋ธ๋กœ ์‹ ์ฒด, ์†, ์–ผ๊ตด ํ†ตํ•ฉ ํ‘œํ˜„.

โœ… RGB-D ๊ธฐ๋ฐ˜ ํฌ์ฆˆ ์˜ˆ์ธก.

โœ… Temporal Smoothing.

โœ… ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ.

6. ๊ฒฐ๋ก 

โœ… RGB-D ๊ธฐ๋ฐ˜ ์‹ค์‹œ๊ฐ„ ํ™•์žฅ ์‹ ์ฒด ํฌ์ฆˆ ์ถ”์ • ์‹œ์Šคํ…œ.

โœ… ์‹œ๊ฐ„์  ์ผ๊ด€์„ฑ๊ณผ ๋†’์€ ์ •ํ™•๋„.

โœ… ๋‹ค์–‘ํ•œ ์‚ฐ์—… ๋ถ„์•ผ ํ™œ์šฉ ๊ฐ€๋Šฅ.

๐Ÿ—“๏ธ ์ถœํŒ ์—ฐ๋„: 2021

2D image ๊ธฐ๋ฐ˜ 3D ํฌ์ฆˆ ์ถ”์ •

model ๋ช… ์—ฐ๋„ ํŠน์ง• ํ•™ํšŒ input output ๋‹จ์ 
Multi-HMR 2025 ๋ฐฑ๋ณธ ViT-S ์‚ฌ์šฉ์‹œ ๋†’์€ ์„ฑ๋Šฅ ICCV RGB ์ด๋ฏธ์ง€(Single RGB Image) ๋‹ค์ค‘ ์ธ๋ฌผ์˜ 3D ๋ฉ”์‰ฌ ๋ณต์žกํ•œ ๊ฐ€๋ ค์ง(Occlusion) ์ƒํ™ฉ์—์„œ ์ •ํ™•๋„ ์ €ํ•˜ ๊ฐ€๋Šฅ์„ฑ, ๊ณ ์‚ฌ์–‘ ์žฅ์น˜ ์š”๊ตฌ
TRAM 2025 in-the-wild videos์—์„œ ์ธ๊ฐ„์˜ 3D ์ „์—ญ ๊ถค์  ๋ฐ ๋™์ž‘ ๋ณต์›ํ•˜๊ธฐ ์œ„ํ•ด ์ œ์•ˆ๋œ 2๋‹จ๊ณ„ ๋ฐฉ๋ฒ• ECCV RGB ์ด๋ฏธ์ง€ ๊ธ€๋กœ๋ฒŒ ์ขŒํ‘œ์—์„œ ๋™์ž‘ ๋ณต์žกํ•œ ๊ฐ€๋ ค์ง(Occlusion) ์ƒํ™ฉ์—์„œ ์ •ํ™•๋„ ์ €ํ•˜
Sapien 2024 ๋ฉ€ํ‹ฐ ๋ชจ๋‹ฌ ๋ชจ๋ธ : ๊นŠ์ด ์ถ”์ •, ํฌ์ฆˆ ์ถ”์ • ๋ฏธ์„ธ ์กฐ์ • ๊ฐ€๋Šฅ ECCV ์ด๋ฏธ์ง€, ๋น„๋””์˜ค, ํ…์ŠคํŠธ ๋ฐ์ดํ„ฐ Pose, Seg, Depth Fps ์— ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ ์—†์Œ, ๊ณ ์‚ฌ์–‘ ์žฅ์น˜ ์š”๊ตฌํ•  ์ˆ˜๋„
Gan-base model 2024 GAN ๊ธฐ๋ฐ˜ ๋ชจ๋ธ, ์ƒ์„ฑ๊ธฐ, ํŒ๋ณ„๊ธฐ ๊ท ํ˜• โ€ฆ RGB ์ด๋ฏธ์ง€ 3D ํฌ์ฆˆ code ๋ฐ์ดํ„ฐ ์…‹์˜ ๋ถ€์กฑ
DensePose 2018 ์ธ๊ฐ„์˜ 3D ํฌ์ฆˆ๋ฅผ 2D ์ด๋ฏธ์ง€์— ํˆฌ์˜ CVPR RGB ์ด๋ฏธ์ง€ 3D ์ธ๊ฐ„ ๋ฉ”์‰ฌ ๋ชจ๋ธ ์ขŒํ‘œ(U, V, I) ๊ฐ€๋ ค์ง, ์†, ์–ผ๊ตด ๊ตฌ์ฒด์  ์‹ ์ฒด๊ตฌ์กฐ ๊ตฌํ˜„ ๋ถ€์กฑ
Lifting 2D to 3D pose 2017 ์‹ค์‹œ๊ฐ„์„ฑ, CVPR 2D ํ‚คํฌ์ธํŠธ 3D ํฌ์ฆˆ ์ขŒํ‘œ ๊ฐ€๋ ค์ง, ์†, ์–ผ๊ตด ๊ตฌ์ฒด์  ์‹ ์ฒด๊ตฌ์กฐ ๊ตฌํ˜„ ๋ถ€์กฑ

2D Pose detectors

model ๋ช… ์—ฐ๋„ ํŠน์ง• ํ•™ํšŒ input output
AlphaPose 2022 top-down ๋ฐฉ์‹, OpenPose ๊ธฐ๋ฐ˜, ๋†’์€ ์ •ํ™•๋„ CVPR RGB ์ด๋ฏธ์ง€ 2D ํฌ์ฆˆ
CPN 2018 ์ด๋ฏธ์ง€์—์„œ ๊ด€์ ˆ keypoints heatmap ํ˜•ํƒœ ์ถ”์ถœ CVPR RGB ์ด๋ฏธ์ง€ 2D ํฌ์ฆˆ
OpenPose 2018 ์‹ค์‹œ๊ฐ„ 2D ์ธ๊ฐ„ ํฌ์ฆˆ ์ถ”์ • + 3D keypoints CVPR RGB ์ด๋ฏธ์ง€ 2D ํฌ์ฆˆ, 3D pose keypoints

๊ด€๋ จ ์‚ฌ์ดํŠธ

paperwithcode_3D_HPE
CVPR

๋น„๊ต ๋…ผ๋ฌธ ๋ฆฌ๋ทฐ

โ€œFrom Methods to Applications: A Review of Deep 3D Human Motion Captureโ€

๋ฐฉ๋ฒ•๊ณผ ์‘์šฉ๊นŒ์ง€, 3D ์ธ๊ฐ„ ๋ชจ์…˜ ์บก์ฒ˜์— ๋Œ€ํ•œ ๋ฆฌ๋ทฐ

๋…ผ๋ฌธ ๊ด€๋ จ ์ •๋ณด!

"From Methods to Applications: A Review of Deep 3D Human Motion Capture"

๐Ÿ“š ์ถœ์ฒ˜: AH AH, OO Khalifa, AA Ibrahim โ€“ PERINTIS eJournal, 2024

๐Ÿ”— ๋…ผ๋ฌธ ๋งํฌ: PERINTIS eJournal ๋งํฌ

๐Ÿ“„ PDF ๋‹ค์šด๋กœ๋“œ: PDF ํŒŒ์ผ ๋งํฌ

๐Ÿง  ์ €์ž ์ •๋ณด:


1. ์—ฐ๊ตฌ ๋ชฉ์ 

โœ… 3D ์ธ๊ฐ„ ๋ชจ์…˜ ์บก์ฒ˜(3D Human Motion Capture) ๊ธฐ์ˆ ์˜ ์ตœ๊ทผ ๋ฐœ์ „๊ณผ ์‘์šฉ ์‚ฌ๋ก€๋ฅผ ๊ฒ€ํ† .

โœ… ๋”ฅ๋Ÿฌ๋‹(Deep Learning) ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ•์„ ๋ถ„์„ํ•˜์—ฌ ๋‹ค์–‘ํ•œ ๊ธฐ์ˆ ์  ๋ฐฉ๋ฒ•๋ก ๊ณผ ์‹ค์ œ ์‘์šฉ ์‚ฌ๋ก€๋ฅผ ๊ฐ•์กฐ.

โœ… ๊ธฐ์กด ๊ธฐ์ˆ ์˜ ํ•œ๊ณ„์ ์„ ํŒŒ์•…ํ•˜๊ณ , ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ์„ ์ œ์‹œ.

2. ๊ธฐ์ˆ ์  ์ ‘๊ทผ๋ฒ• ๋ฐ ๋ถ„๋ฅ˜

  • ๋น„์ „ ๊ธฐ๋ฐ˜ ๋ชจ์…˜ ์บก์ฒ˜(Vision-Based Motion Capture): RGB ๋ฐ RGB-D ์นด๋ฉ”๋ผ ๋ฐ์ดํ„ฐ๋ฅผ ์‚ฌ์šฉํ•ด ํฌ์ฆˆ์™€ ์›€์ง์ž„์„ ์ถ”์ •.
  • ์„ผ์„œ ์œตํ•ฉ(Sensor Fusion): IMU, LiDAR, RGB-D ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ฉํ•˜์—ฌ ํฌ์ฆˆ ์ •ํ™•๋„ ๊ฐœ์„ .
  • Graph-Based Methods: ๊ทธ๋ž˜ํ”„ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ(GNN)๋ฅผ ์‚ฌ์šฉํ•ด ํ‚คํฌ์ธํŠธ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ๋ชจ๋ธ๋ง.
  • Zero-shot Learning ๋ฐ Few-shot Learning: ํ•™์Šต ๋ฐ์ดํ„ฐ ๋ถ€์กฑ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐ.
  • Interpretable Models: ์‹ค์‹œ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ ๋ฐ ์ ์šฉ ์‚ฌ๋ก€ ์ตœ์ ํ™”.

3. ์‘์šฉ ์‚ฌ๋ก€

  • ์Šค๋งˆํŠธ ๊ฐ์‹œ(Smart Surveillance): ์ด์ƒ ํ–‰๋™ ๋ฐ ์œ„ํ—˜ ์ƒํ™ฉ ๊ฐ์ง€.
  • ์Šคํฌ์ธ  ๋ฐ ํ›ˆ๋ จ(Sports & Training): ์ตœ์ ํ™”๋œ ํ›ˆ๋ จ ์ œ๊ณต.
  • ์˜๋ฃŒ ๋ฐ ์žฌํ™œ(Medical Rehabilitation): ๋งž์ถคํ˜• ์น˜๋ฃŒ ์ œ๊ณต.
  • ๊ฒŒ์ž„ ๋ฐ VR/AR: ๊ฐ€์ƒ ํ™˜๊ฒฝ์— ์ •ํ™•ํ•˜๊ฒŒ ๋ฐ˜์˜.
  • ๋กœ๋ด‡ ๊ณตํ•™(Robotics): ์ธ๊ฐ„์˜ ํ–‰๋™์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ธ์‹.

4. ์‹คํ—˜ ๋ฐ ๊ฒฐ๊ณผ

โœ… ๋ฐ์ดํ„ฐ์…‹: Human3.6M, MPI-INF-3DHP, CMU Panoptic.

โœ… ์ •ํ™•๋„: ํ‰๊ท  ์˜ค์ฐจ์œจ(MPJPE)์ด ๊ฐœ์„ ๋จ.

โœ… ์ฒ˜๋ฆฌ ์†๋„: ์‹ค์‹œ๊ฐ„ ์ถ”๋ก  ์†๋„ ํ–ฅ์ƒ.

5. ์ฃผ์š” ๊ธฐ์—ฌ

โœ… ์ข…ํ•ฉ์  ๋ฆฌ๋ทฐ: ๊ธฐ์ˆ ์ , ์‘์šฉ์  ์ธก๋ฉด ํฌ๊ด„ ๋ถ„์„.

โœ… ๊ธฐ์ˆ ์  ํ†ต์ฐฐ: ๋‹ค์–‘ํ•œ ์ ‘๊ทผ๋ฒ• ๊ฒ€ํ† .

โœ… ์‹ค์งˆ์  ์‘์šฉ: ์Šค๋งˆํŠธ ๊ฐ์‹œ, ์Šคํฌ์ธ , ์˜๋ฃŒ ๋“ฑ ๊ฐ•์กฐ.

6. ํ•œ๊ณ„ ๋ฐ ํ–ฅํ›„ ์—ฐ๊ตฌ ๋ฐฉํ–ฅ

โœ… ๊ฐ€๋ ค์ง(Occlusion) ๋ฌธ์ œ.

โœ… ์‹ค์‹œ๊ฐ„ ์ฒ˜๋ฆฌ ์†๋„ ํ•œ๊ณ„.

โœ… ๋ฐ์ดํ„ฐ์…‹ ๋ถ€์กฑ ๋ฌธ์ œ.

โœ… ์œค๋ฆฌ์  ๋ฌธ์ œ ๋ฐ ๊ธฐ์ˆ ์  ๊ทœ์ œ ํ•„์š”.

7. ๊ฒฐ๋ก 

โœ… 3D ์ธ๊ฐ„ ๋ชจ์…˜ ์บก์ฒ˜ ๊ธฐ์ˆ ์˜ ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ ‘๊ทผ๋ฒ• ๋ถ„์„.

โœ… ๋‹ค์–‘ํ•œ ์‚ฐ์—… ๋ถ„์•ผ(์Šค๋งˆํŠธ ๊ฐ์‹œ, ์Šคํฌ์ธ , ์˜๋ฃŒ, ๊ฒŒ์ž„, ๋กœ๋ด‡ ๊ณตํ•™)์—์„œ ํ™œ์šฉ ๊ฐ€๋Šฅ์„ฑ ์ž…์ฆ.

๐Ÿ—“๏ธ ์ถœํŒ ์—ฐ๋„: 2024


  1. Y. Huang, M. Kaufmann, E. Aksan, M. J. Black, O. Hilliges, and G. Pons-Moll, โ€œDeep inertial poser: Learning to reconstruct human pose from sparse inertial measurements in real time,โ€ ACM Trans. Graph., vol. 37, no. 6, pp. 1โ€“15, Dec. 2018. ๊ฐ€์†๋„ ์—๋Ÿฌ๋Š” ๋ชจ์…˜์˜ ๋ณ€ํ™”๋Ÿ‰์„ ์ธก์ •ํ•˜์—ฌ, ์ด ๋ณ€ํ™”๋Ÿ‰์ด ๋„ˆ๋ฌด ํฌ๊ฑฐ๋‚˜ ์ž‘์„ ๋•Œ ์—๋Ÿฌ๋กœ ํŒ๋‹จํ•œ๋‹ค.ย 

  2. T. Flash and N. Hogan, โ€œThe coordination of arm movements: An experimentally confirmed mathematical model,โ€ J. Neurosci., vol. 5, no. 7, pp. 1688โ€“1703, Jul. 1985. ์ง€ํ„ฐ ์—๋Ÿฌ๋Š” ๋ชจ์…˜์˜ ๋ถˆ์•ˆ์ •์„ฑ์„ ์ธก์ •ํ•˜์—ฌ, ์ด ๋ถˆ์•ˆ์ •์„ฑ์ด ๋„ˆ๋ฌด ํฌ๊ฑฐ๋‚˜ ์ž‘์„ ๋•Œ ์—๋Ÿฌ๋กœ ํŒ๋‹จํ•œ๋‹ค.ย